Skip to main content
Log in

Absorption Spectra of Gold Nanoparticle Suspensions

  • OPTICS AND SPECTROSCOPY
  • Published:
Russian Physics Journal Aims and scope

Three gold nanoparticle suspensions are obtained, and mean radii in distributions – (6.1 ± 0.2), (11.9 ± 0.3), and (17.3 ± 0.7) nm – are determined by the transmission electron microscopy method. The optical absorption spectra of suspensions are obtained and studied. Calculation of spectral dependences of the absorption index of suspensions at values of the gold complex refractive index taken from the literature showed a significant deviation of experimental and calculated data in the region of 450–800 nm. Spectral dependences of the absorption of suspensions are simulated within the framework of the Mie–Drude theory taking into account the interband absorption in the form of an additional term in the imaginary part of the dielectric permittivity of the Gaussian type. It is shown that to quantify the spectral dependences in the region of the plasmon absorption band of nanoparticles, correction of the parameters of the interband absorption is necessary in addition to the increase of the relaxation parameter of the Drude theory. Spectral dependences of the dielectric permittivity of gold in nanodimensional state are refined from the solution of the inverse problem. The results of the present work are important for predicting the special features of operation of photonic devices and optical detonators based on gold nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Ali, E. C. Neyts, and V. S. Myasnichenko, Phys. Chem. Chem. Phys., 18, No. 2, 792–800 (2016).

    Article  Google Scholar 

  2. A. G. Bembel, Russ. Phys. J., 59, No. 10, 1567–1574 (2016).

    Article  Google Scholar 

  3. L. Dykman, V. Bogatyrev, S. Shchegolev, et al., Gold Nanoparticles. Synthesis, Properties, and Biomedical Applications [in Russian], Nauka, Moscow (2008).

  4. A. V. Kalenskii, A. A. Zvekov, A. P. Nikitin, et al., Opt. Spectr., 118, No. 6, 978–987 (2015).

    Article  ADS  Google Scholar 

  5. A. V. Kalenskii, A. A. Zvekov, A. P. Nikitin, and M. V. Anan’eva, Russ. Phys. J., 58, No. 8, 1098–1104 (2015).

    Article  Google Scholar 

  6. V. A. Khanadeev, B. N. Khlebtsov, and N. G. Khlebtsov, J. Quant. Spectrosc. Rad. Transfer, 187, 1–9 (2017).

    Article  ADS  Google Scholar 

  7. V. I. Zakomirnyi, I. L. Rasskazov, S. V. Karpov, et al., J. Quant. Spectrosc. Rad. Transfer, 187, 54–61 (2017).

    Article  ADS  Google Scholar 

  8. I. L. Rasskazov, V. A. Markel, and S. V. Karpov, Opt. Spectrosc., 115, No. 5, 666–674 (2013).

    Article  ADS  Google Scholar 

  9. B. P. Aduev, D. R. Nurmukhametov, G. M. Belokurov, et al., Tech. Phys., 59, No. 9, 1387–1392 (2014).

    Article  Google Scholar 

  10. T. Ghambari and D. Dorranian, Opt. Spectrosc., 119, No. 5, 838–848 (2015).

    Article  ADS  Google Scholar 

  11. Sh. Zhao and J. Zhu, Plasmonics, 12, No. 4, 1153–1159 (2017).

    Article  Google Scholar 

  12. B. R. Kumar, N. S. Basheer, A. Kurian, et al., Appl. Phys., B, 115, 335–342 (2014).

    Article  ADS  Google Scholar 

  13. J. Singh, B. Satpati, and S. Mohapatra, Plasmonics, 12, No. 3, 877–888 (2017).

    Article  Google Scholar 

  14. S. P. Tiwari, K. Kumar, and V. K. Rai, Appl. Phys. B, 121, 221–228 (2015).

    Article  ADS  Google Scholar 

  15. P. B. Johnson and R. W. Christy, Phys. Rev. B, 6, No. 12, 4370–4379 (1972).

    Article  ADS  Google Scholar 

  16. M. Schmid, S. Zehnder, P. Schwaller, et al., in: Proc. Adv. Laser Technol., Vol. 1, Thun (2012), DOI: https://doi.org/10.12684/alt/1.78.

  17. D. Barchiesi and Th. Grosges, J. Nanophotonics, 8, No. 1, 083097 (2014).

    Article  ADS  Google Scholar 

  18. L. Lascialfari, P. Marsili, S. Caporali, et al., Thin Solid Films, 569, 93–99 (2014).

    Article  ADS  Google Scholar 

  19. F. Hubenthal, C. Hendrich, and F. Träger, Appl. Phys. B, 100, 225–230 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Anan’eva.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 10, pp. 3–9, October, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anan’eva, M.V., Nurmukhametov, D.R., Zverev, A.S. et al. Absorption Spectra of Gold Nanoparticle Suspensions. Russ Phys J 60, 1651–1658 (2018). https://doi.org/10.1007/s11182-018-1264-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-018-1264-2

Keywords

Navigation