Skip to main content
Log in

Plasmonic enhancement in upconversion emission of La2O3:Er3+/Yb3+ phosphor via introducing silver metal nanoparticles

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In the present work, authors have synthesized silver (Ag) nanoparticle (NP) embedded La2O3:Er3+/Yb3+ powder phosphor. The synthesis method has resulted in silver oxide–lanthanum oxide composite material. Through subsequent heat treatment of sample in pellet form, the silver metal nanoparticles were formed. The presence of plasmonic Ag NPs in the matrix is confirmed by various techniques. Large enhancement in downconversion as well as upconversion emission intensity of Er3+ ions at various concentrations of Ag NPs is obtained. Large enhancement in the upconversion emission intensity is correlated to the reduction in decay time of 4S3/2 level in the presence of Ag NPs, and possible reasons for intensity enhancement are discussed. The application of phosphor in fingermark detection is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. G.A. Kumar, M. Pokhrel, A. Martinez, R.C. Dennis, I.L. Villegas, D.K. Sardar, J. Alloys Compd. 513, 559 (2012)

    Article  Google Scholar 

  2. W. Zhang, F. Ding, S.Y. Chou, Adv. Mater. 24, 236 (2012)

    Google Scholar 

  3. V.K. Rai, L.S. Menezes, C.B. Araujo, L.R.P. Kassab, D.M. Silva, J. Appl. Phys. 103, 093526 (2008)

    Article  ADS  Google Scholar 

  4. L.R.P. Kassab, F.A. Bomfim, J.R. Martinelli, N.U. Wetter, J.J. Neto, C.B. Araujo, Appl. Phys. B 94, 239 (2009)

    Article  ADS  Google Scholar 

  5. M.W. Knight, H. Sobhani, P. Nordlander, N.J. Halas, Science 332, 702 (2011)

    Article  ADS  Google Scholar 

  6. L.R.P. Kassab, D.S. Silva, R. Almeida, C.B. Araujo, Appl. Phys. Lett. 94, 101912 (2009)

    Article  ADS  Google Scholar 

  7. H. Nabika, S. Deki, J. Phys. Chem. B 107, 9161 (2003)

    Article  Google Scholar 

  8. F. Tam, G.P. Goodrich, B.R. Johnson, N.J. Halas, Nano Lett. 46, 9040 (2007)

    Google Scholar 

  9. J.M. Luther, P.K. Jain, T. Ewers, A.P. Alivisatos, Nat. Mater. 10, 361 (2011)

    Article  ADS  Google Scholar 

  10. C. Shi, S. Soltani, A.M. Armani, Nano Lett. 13, 5827 (2013)

    Article  ADS  Google Scholar 

  11. E. Petryayeva, U.J. Krull, Anal. Chim. Acta 706, 8 (2011)

    Article  Google Scholar 

  12. S.P. Tiwari, A.K. Singh, K. Kumar, Energy Environ. Focus 3, 175 (2014)

    Article  Google Scholar 

  13. A.K. Singh, S. Singh, D. Kumar, D.K. Rai, S.B. Rai, K. Kumar, Opt. Lett. 37, 776 (2012)

    Article  ADS  Google Scholar 

  14. A.K. Parchur, R.S. Ningthoujam, Dalton Trans. 40, 7590 (2011)

    Article  Google Scholar 

  15. M.K. Mahata, K. Kumar, V. Rai, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 124, 285 (2014)

    Article  Google Scholar 

  16. G.I.N. Waterhouse, G.A. Bowmaker, J.B. Metson, Phys. Chem. Chem. Phys. 3, 3838–3845 (2001)

    Article  Google Scholar 

  17. A. Pandey, S. Som, V. Kumara, V. Kumara, K. Kumar, V.K. Rai, H.C. Swart, Sens. Actuators, B 202, 1305 (2014)

    Article  Google Scholar 

  18. S.P. Tiwari, M.K. Mahata, K. Kumar, V.K. Rai, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 150, 623 (2015)

    Article  Google Scholar 

  19. T. Fan, Q. Zhang, Z. Jiang, Opt. Commun. 284, 1594 (2011)

    Article  ADS  Google Scholar 

  20. J. Sokolnicki, Mater. Chem. Phys. 131, 306 (2011)

    Article  ADS  Google Scholar 

  21. S. Schietinger, T. Aichele, H. Wang, T. Nann, O. Benson, Nano Lett. 10, 134 (2010)

    Article  ADS  Google Scholar 

  22. N.C. Lindquist, P. Nagpal, A. Lesuffleur, D.J. Norris, S.H. Oh, Nano Lett. 10, 1369 (2010)

    Article  ADS  Google Scholar 

  23. H.A. Atwater, Sci. Am. 296, 56 (2007)

    Article  Google Scholar 

  24. A. Polman, Science 322, 868 (2008)

    Article  Google Scholar 

  25. J.A. Schuller, E.S. Barnard, W. Cai, Y.C. Jun, J.S. White, M.L. Brongersma, Nat. Mater. 9, 193 (2010)

    Article  ADS  Google Scholar 

  26. P. Nagpal, N.C. Lindquist, S.H. Oh, D.J. Norris, Science 325, 594 (2009)

    Article  ADS  Google Scholar 

  27. N.J. Halas, S. Lal, W.S. Chang, S. Link, P. Nordlander, Chem. Rev. 111, 3913 (2011)

    Article  Google Scholar 

  28. M. Durach, A. Rusina, V.I. Klimov, M.I. Stockman, New J. Phys. 10, 105011 (2008)

    Article  ADS  Google Scholar 

  29. Y. Wu, X. Shen, S. Dai, Y. Xu, F. Chen, C. Lin, T. Xu, Q. Nie, J. Phys. Chem. C 115, 25040 (2011)

    Article  Google Scholar 

  30. M.K. Mahata, S.P. Tiwari, S. Mukharjee, K. Kumar, V.K. Rai, J. Opt. Soc. Am. 31, 1814 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

S. P. Tiwari acknowledges to Indian School of Mines, Dhanbad (India), for providing Junior Research Fellowship and Dr. M. Gupta, UGC DAE Consortium for Scientific Research, Indore (India), for the XRD measurement. Dr. K. Kumar thanks to CSIR, New Delhi (India), for financial support [03(1303)/13/EMR-III].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, S.P., Kumar, K. & Rai, V.K. Plasmonic enhancement in upconversion emission of La2O3:Er3+/Yb3+ phosphor via introducing silver metal nanoparticles. Appl. Phys. B 121, 221–228 (2015). https://doi.org/10.1007/s00340-015-6223-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-015-6223-9

Keywords

Navigation