Skip to main content
Log in

Growth of Epitaxial SiSn Films with High Sn Content for IR Converters

  • PHYSICS OF SEMICONDUCTORS AND DIELECTRICS
  • Published:
Russian Physics Journal Aims and scope

Growth of SiSn compounds with a Sn content from 10 to 35% is studied. The morphology and surface structure of the SiSn layers are examined and the kinetic diagram of the morphological state of SiSn films is established in the temperature range of 150–450°C. During the growth of SiSn films from 150 to 300°C, oscillations of specular beam were observed. For the first time, periodic multilayer SiSn/Si structures with pseudomorphic monocrystalline SiSn layers with the Sn content from 10 to 25% are grown. The c(8×4) and (5×1) superstructures are identified during the growth of Si on the SiSn layer and the conditions are determined for the formation of the desired Si surface structure by controlling the growth temperature. From the diffraction reflection curves, the lattice parameter, the SiSn composition, and the period in the multilayer periodic structure are defined, which with high precision correspond to the specified values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Xu, L. Jiang, J. Kouvetakis, and J. Menendez, Appl. Phys. Lett., 103, 072111 (2013).

    Article  ADS  Google Scholar 

  2. R. Soref, Nature Photon., 4, 495 (2010).

    Article  ADS  Google Scholar 

  3. H. H. Tseng, H. Li, V. Mashanov, et al., Appl. Phys. Lett., 103, 231907 (2013).

    Article  ADS  Google Scholar 

  4. M. Oehme, K. Kostecki, T. Arguirov, et al., IEEE Photon. Technol. Lett., 26, 187 (2014).

    Article  ADS  Google Scholar 

  5. R. Chen, S. Gupta, Y.-C. Huang, et al., Nano Lett., 14, 37 (2014).

    Article  ADS  Google Scholar 

  6. S. Wirths, R. Geiger, N. von den Driesch, et al., Nature Photon., 9, 88 (2015).

    Article  ADS  Google Scholar 

  7. W. Du, Y. Zhou, S. A. Ghetmiri, et al., Appl. Phys. Lett., 104, 241110 (2014).

    Article  ADS  Google Scholar 

  8. M. Ferhat and A. Zaoui, Infrared Phys. Technol., 42, 81 (2001).

    Article  ADS  Google Scholar 

  9. P. Moontragoon, Z. Ikonic, and P. Harrison, Semicond. Sci. Technol., 22, 742 (2007).

    Article  ADS  Google Scholar 

  10. R. A. Soref and C. H. Perry, J. Appl. Phys., 69, 539 (1991).

    Article  ADS  Google Scholar 

  11. J. Tolle, A. V.G. Chizmeshya, Y.-Y. Fang, et al., Appl. Phys. Lett., 89, 231924 (2006).

    Article  ADS  Google Scholar 

  12. S. Y. Shiryaev, J. L. Hansen, P. Kringhoj, and A. N. Larsen, Appl. Phys. Lett., 67, 2287 (1995).

    Article  ADS  Google Scholar 

  13. Y. Kuwano, M. Ohnichi, and H. Nishiwaki, Proc. 16th IEEE Photovoltaics Specialist Conference (1982).

  14. D. L. Williamson, R. C. Kerns, and S. K. Deb, Appl. Phys. Lett., 55, 2816 (1984).

    Google Scholar 

  15. M. Vergnat, G. Marchal, M. Piecuch, and M. Gerl, Solid State Commun., 50, 237 (1984).

    Article  ADS  Google Scholar 

  16. D. Girginoudi, A. Thanailakis, and A. Christou, Proc. Mater. Res. Soc., 77, 603 (1987).

    Article  Google Scholar 

  17. M. R. Sardela, R. Turan, M. Willander, et al., J. Appl. Phys., 77, 1411 (1995).

    Article  ADS  Google Scholar 

  18. K. S. Min and H. A. Atwater, Appl. Phys. Lett., 72, 1884 (1998).

    Article  ADS  Google Scholar 

  19. M. Kato, Y. Nagae, M. Kurosawa, et al., Proc. 9th International Conference on Silicon Epitaxy and Heterostructures, 101 (2015).

  20. A. Karim, G. V. Hansson, W.-X. Ni, et al., Opt. Mater., 27, 836 (2005).

    Article  ADS  Google Scholar 

  21. A. E. Dolbak and B. Z. Olshanetsky, Cent. Eur. J. Phys., 6, 634 (2008).

    Google Scholar 

  22. H. J.W. Zandvliet, H. B. Elswijk, D. Dijkkamp, et al., J. Appl. Phys., 70, 2614 (1991).

    Article  ADS  Google Scholar 

  23. A. I. Nikiforov, V. A. Markov, V. A. Cherepanov, and O. P. Pchelyakov, Thin Solid Films, 336, 183 (1998).

    Article  ADS  Google Scholar 

  24. A. I. Nikiforov, V. I. Mashanov, V. A. Timofeev, et al., Thin Solid Films, 557, 188 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Timofeev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 2, pp. 135–140, February, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timofeev, V.A., Nikiforov, A.I., Kokhanenko, A.P. et al. Growth of Epitaxial SiSn Films with High Sn Content for IR Converters. Russ Phys J 60, 354–359 (2017). https://doi.org/10.1007/s11182-017-1082-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-017-1082-y

Keywords

Navigation