Skip to main content
Log in

Dynamics of Edge Dislocations in a Low-Stability FCC-System Irradiated by High-Energy Particles

  • Published:
Russian Physics Journal Aims and scope

Using the method of molecular dynamics, the behavior of plastic deformation and defect structure selforganization are investigated in a low-stability condensed FCC-system irradiated with high-energy particles. An analysis of the dynamics of a single edge dislocation and elementary dislocation ensembles, subjected to the action of a post-cascade shock wave, demonstrates that as a result of this action the dislocations are displaced towards the wave source. As this goes on, the roles of both collective effects and external influences on the ensembles of complex interacting defects increase. In particular, the investigation performed in this work demonstrates that the post-cascade shock waves can give rise to migration of not only single edge dislocation but also elementary dislocation ensembles. It is demonstrated that the changes in the dislocation structure of the irradiated material result from the unloading waves following the post-cascade waves, rather than from the latter waves themselves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. A. Koneva, L. I. Trishkina, A. I. Potekaev, and E. V. Kozlov, Structural-Phase Transformations in Low-Stability States of Metal Systems under Thermal- Force Interaction (Ed. A. I. Potekaev) [in Russian], NTL Publ., Tomsk (2015).

  2. A. I. Potekaev, V. A. Starenchenko, V. V. Kulagina, et al., Low-Stability States of Metal Systems (Ed. A. I. Potekaev) [in Russian], NTL Publ., Tomsk (2012).

  3. A. I. Potekaev, M. D. Starostenkov, and V. V. Kulagina, The Effect of Point and Planar Defects on the Structural-Phase Transformations in the Pre-Transition Low-Stability Region of Metal Systems (Ed. A. I. Potekaev) [in Russian], NTL Publ., Tomsk (2014).

  4. A. I. Potekaev and V. V. Kulagina, Russ. Phys. J., 54, No. 8, 839–854 (2012).

    Article  Google Scholar 

  5. A. I. Potekaev and V. V. Kulagina, Izv. Vyssh. Uch. Zaved., Fizika, 52, No. 8/2, 456–459 (2009).

    Google Scholar 

  6. A. I. Potekaev, A. A. Chaplygina, M. D. Starostenkov, et al., Russ. Phys. J., 55, No. 7, 814–824 (2012).

    Article  Google Scholar 

  7. A. I. Potekaev, A. A. Chaplygina, M. D. Starostenkov, et al., Russ. Phys. J., 55, No. 11, 1248–1257 (2013).

    Article  Google Scholar 

  8. A. I. Potekaev, A. A. Chaplygina, M. D. Starostenkov, et al., Russ. Phys. J., 56, No. 6, 620–629 (2013).

    Article  Google Scholar 

  9. P. A. Chaplygin, M. D. Starostenkov, A. I. Potekaev, et al., Russ. Phys. J., 58, No. 4, 485–491 (2015).

    Article  Google Scholar 

  10. Yu. N. Osetsky and D. J. Bacon, Modell. Simulat. Mater. Sci. Eng., 11, No. 4, 427–447 (2003).

    Article  ADS  Google Scholar 

  11. M. S. Daw, S. M. Foiles, and M. I. Baskes, Mater. Sci. Rep., 9, No. 7–8 (1993).

  12. V. P. Zhukov and A. A. Boldin, Atomic Energy, 68, 884–889 (1987).

    Article  Google Scholar 

  13. A. V. Starostenkov, Radiation-Dynamics Processes in FCC-crystals Accompanying High-Rate Mass Transfer [in Russian], Kemerovo, Kuzbassvuzizdat (2014).

    Google Scholar 

  14. C. L. Kelchner, S. J. Plimpton, and J. C. Hamilton, Phys. Rev. B, 58, 11085 (1998).

    Article  ADS  Google Scholar 

  15. M. A. Mogilevskii and I. O. Mynkin, Combustion, Explosion, and Shock Waves, No. 5, 159–163 (1978).

  16. M. S. Aksenov, G. M. Poletaev, R. Yu. Rakitin, and M. D. Starostenkov, Fund. Probl. Sovr. Materialoved. (Basic Problems of Materials Science (BPMS)), No. 2, 64–67 (2005).

  17. A. M. Krivtsov, Physics of the Solid State, 46, Issue 6, 1055–1060 (2004).

    Article  ADS  Google Scholar 

  18. A. V. Markidonov, M. D. Starostenkov, A. A. Soskov, and G. M. Poletaev, Physics of the Solid State, 57, Issue 8, 1521–1524 (2015).

    Article  ADS  Google Scholar 

  19. A. V. Markidonov, M. D. Starostenkov, and M. V. Smirnov, Russ. Phys. J., 58, No. 6, 828–832 (2015).

    Article  Google Scholar 

  20. A. V. Markidonov, M. D. Starostenkov, and G. M. Poletaev, Izvestiya RAS. Ser. Fizich., 79, No. 9, 1233–1237 (2015).

    Google Scholar 

  21. V. P. Zhukov and A. V. Demidov, Atomic Energy, 59, 568–573 (1985).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Starostenkov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 9, pp. 105–112, September, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Starostenkov, M.D., Potekaev, A.I., Markidonov, A.V. et al. Dynamics of Edge Dislocations in a Low-Stability FCC-System Irradiated by High-Energy Particles. Russ Phys J 59, 1446–1453 (2017). https://doi.org/10.1007/s11182-017-0929-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-017-0929-6

Keywords

Navigation