Skip to main content
Log in

Temperature and Field Dependences of Parameters of the Equivalent Circuit Elements of MIS Structures Based on MBE n-Hg0.775Cd0.225Te in the Strong Inversion Mode

  • PHYSICS OF SEMICONDUCTORS AND DIELECTRICS
  • Published:
Russian Physics Journal Aims and scope

A technique is proposed for the determining the parameters of the equivalent circuit elements in strong inversion mode using the measurement results of the admittance of MIS structures based on n-Hg0.775Cd0.225Te grown by molecular beam epitaxy. It is shown that at 77 K and frequencies above 10 kHz, the capacitancevoltage characteristics of MIS structures based on n-Hg0.775Cd0.225Te with a near-surface graded gap layer have a high-frequency behavior with respect to the recharge time of surface states located near the Fermi level of intrinsic semiconductor. It is established that the electron concentration in the near-surface graded-gap layer exceeds an average concentration found by the Hall method by more than 2 times. The proposed technique was used for determining the temperature dependences of the insulator capacitance, capacitance and differential resistance of the space-charge region, and capacitance of the inversion layer in MIS structures based on n-Hg0.775Cd0.225Te without a graded-gap layer. The temperature and voltage dependences of the parameters of the equivalent circuit elements in strong inversion are calculated. The results of calculation are qualitatively consistent with the results obtained from the measurements of the admittance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Rogal’skii, Infrared Detectors/ed. A. V. Voitsekhovskii [Russian translation], Nauka, Novosibirsk (2003).

  2. J. Chu and A. Sher, Device Physics of Narrow Gap Semiconductors, Springer, N. Y. (2010).

  3. A. V. Voitsekhovskii and V. N. Davydov, Photovoltaic MIS-Structures of the Narrow-Gap Semiconductors [in Russian], Radio I Svyaz, Tomsk (1990).

  4. N. Wang, S. Liu, T. Lan, et al., Proc. SPIE, 8419, 84191D (2012).

    Article  ADS  Google Scholar 

  5. G. H. Tsau, A. Sher, M. Madou, et al., J. Appl. Phys., 59, No. 4, 1238–1244 (1986).

    Article  ADS  Google Scholar 

  6. Y. Nemirovsky and I. Bloom, J. Vac. Sci. Technol. A, 6, No. 4, 2710–2715 (1988).

    Article  ADS  Google Scholar 

  7. E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology, Wiley, New-York (1982).

    Google Scholar 

  8. A. V. Voitsekhovskii, S. N. Nesmelov, and S. M. Dzyadukh, Russ. Phys. J., 52, No. 10, 1003–1020 (2009).

    Article  Google Scholar 

  9. V. N. Ovsyuk, G. L. Kuryshev, Yu. G. Sidorov, et al., Matrix Photodetector Devices of Infrared Region [in Russian], Nauka, Novosibirsk (2001).

  10. V. N. Ovsyuk and A. V. Yartsev, Proc. SPIE, 6636, 663617–663621 (2007).

    Article  Google Scholar 

  11. V. V. Vasil’ev and Yu. P. Mashukov, Semiconductors, 41, No. 1, 37–42 (2007).

    Article  ADS  Google Scholar 

  12. D. I. Gorn, S. N. Nesmelov, A. V. Voitsekhovskii, et al., Izv. Vyssh. Uchebn. Zaved. Fizika, 51, No. 9/3, 134 (2008).

    Google Scholar 

  13. A. V. Voitsekhovskii, S. N. Nesmelov, and S. M. Dzyadukh, Opto-Electron. Rev., 22, No. 4, 236–244 (2014).

    Article  ADS  Google Scholar 

  14. A. V. Voitsekhovskii, S. N. Nesmelov, S. M. Dzyadukh, et al., Russ. Phys. J., 57, No. 4, 536–544 (2014).

    Article  Google Scholar 

  15. A. V. Voitsekhovskii, S. N. Nesmelov, S. M. Dzyadukh, et al., Infrared Phys. Technol., 71, 236–241 (2015).

    Article  ADS  Google Scholar 

  16. A. V. Voitsekhovskii, S. N. Nesmelov, S. M. Dzyadukh, et al., Russ. Phys. J., 57, No. 8, 1070–1081 (2014).

    Article  Google Scholar 

  17. A. V. Voitsekhovskii, S. N. Nesmelov, and S. M. Dzyadukh, Russ. Phys. J., 58, No. 4, 540–551 (2015).

    Article  Google Scholar 

  18. M. Michael and W. F. Leonard, Solid-State Electron., 17, 71–85 (1974).

    Article  ADS  Google Scholar 

  19. I. Bloom and Y. Nemirovsky, Solid-State Electron., 31, 17–25 (1988).

    Article  ADS  Google Scholar 

  20. R. K. Bhan and V. Dhar, Semicond. Sci. Technol., 19, 413–416 (2004).

    Article  ADS  Google Scholar 

  21. Z. J. Quan, G. B. Chen, L. Z. Sun, et al., Infrared Phys. Technol., 50, 1–8 (2007).

    Article  ADS  Google Scholar 

  22. R. Fu and J. Pattison, Opt. Eng., 51, No. 10, 104003(1–4) (2012).

  23. V. V. Vasilyev, A. V. Voitsekhovskii, F. N. Dultsev, et al., Prikladn. Fiz., No. 5, 63–66 (2007).

  24. V. I. Gaman, Physics of Semiconductor Devices [in Russian], Izd. NTL, Tomsk (2000).

  25. A. V. Voitsekhovskii, S. N. Nesmelov, S. M. Dzyadukh, et al., Prikladn. Fiz., No. 5, 80–86 (2011).

  26. W. Van Gelder and E. H. Nicollian, J. Electrochem. Soc., 118, No. 1, 138–141 (1971).

    Article  Google Scholar 

  27. V. M. Koleshko and G. D. Kaplan, Obz. Elektron. Tekh. Mikroelektron., No. 2(465), 82 (1977).

  28. A. V. Voitsekhovskii, S. N. Nesmelov, S. M. Dzyadukh, et al., Russ. Phys. J., 55, No. 8, 917–924 (2013).

    Article  Google Scholar 

  29. E. V. Permikina and A. S. Kashuba, Usp. Prikladn. Fiz., 3, No. 2, 180–189 (2015).

    Google Scholar 

  30. A. V. Voitsekhovskii, D. V. Grigor’ev, and N. Kh. Talipov, Russ. Phys. J., 51, No. 10, 1001–1015 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Voitsekhovskii.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 7, pp. 8–18, July, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voitsekhovskii, A.V., Nesmelov, S.N. & Dzyadukh, S.M. Temperature and Field Dependences of Parameters of the Equivalent Circuit Elements of MIS Structures Based on MBE n-Hg0.775Cd0.225Te in the Strong Inversion Mode. Russ Phys J 59, 920–933 (2016). https://doi.org/10.1007/s11182-016-0855-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-016-0855-z

Keywords

Navigation