Skip to main content
Log in

Theoretical Investigation of the Optical Spectra of Organic Compounds in Natural Surrounding

  • Published:
Russian Physics Journal Aims and scope

Abstract

The hybrid multiscale approximation based on molecular dynamics, quantum mechanics, and statistical theory is used to generate profiles of electronic vibrational absorption and fluorescence bands of some organic compounds and biological objects whose photophysical properties specifically depend on external conditions. A temperature dependence of the spectrum width and intensity of transition to the long-wavelength band of benzene surrounded by cyclohexane molecules is demonstrated. Statistical broadband absorption spectra for estradiol in ethanol, hexane, and dimethyl sulfoxide have been obtained and analyzed at room temperature together with a wide spectrum of transitions to numerous excited states of Trp-cage miniprotein. The absorption and emission spectra of 9-cyan anthracene have been generated under various thermodynamic conditions. This allows changes in the spectral profile with increasing temperatures and pressure to be detected. A dependence of the tryptophan spectra on the protein microsurrounding is investigated. The possibility of charge transfer from tryptophan residue to the eupatorin molecule trapped by human serum albumin is analyzed. Spectral properties and charge transfer from the excited donor to acceptor states are calculated using the polarizable embedding approach for modeling of surrounding protein structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Frenkel and B. Smit, Understanding Molecular Simulation, Academic Press, Orlando (1996).

    MATH  Google Scholar 

  2. R. Car and M. Parrinello, Phys. Rev. Lett., 55, 2471–2474 (1985).

    Article  ADS  Google Scholar 

  3. T. D. Kühne, M. Krack, F. R. Mohamed, and M. Parrinello, Phys. Rev. Lett., 98, 066401 (2007).

    Article  ADS  Google Scholar 

  4. V. Pomogaev, A. Pomogaeva, and Y. Aoki, J. Phys. Chem., A113, 1429–1433 (2009).

    Google Scholar 

  5. V. Pomogaev, F. L. Gu, A. Pomogaeva, and Y. Aoki, Int. J. Quantum Chem., 109, 1328–1340 (2009).

    Article  ADS  Google Scholar 

  6. Y. Komeiji, T. Ishida, D. G. Fedorov, and K. Kitaura, J. Comput. Chem., 28, 1750 (2007).

    Article  Google Scholar 

  7. A. H. Steindal, J. M. H. Olsen, K. Ruud, et al., Phys. Chem. Chem. Phys., 14, 5440–5451 (2012).

    Article  Google Scholar 

  8. Y. Mochizuki, Y. Komeiji, T. Ishikawa, et al., Chem. Phys. Lett., 437, 66–72 (2007).

    Article  ADS  Google Scholar 

  9. C. Raynaud, R. Poteau, L. Maron, and F. Jolibois, J. Mol. Struct.: Theochem., 771, 43–50 (2006).

    Google Scholar 

  10. P. Arora, L. V. Slipchenko, S. P. Webb, et al., J. Phys. Chem., A114, 6742 (2010).

    Article  Google Scholar 

  11. V. Pomogaev, A. Pomogaeva, P. Avramov, et al., Theor. Chem. Acc., 130, 609–632 (2011).

    Article  Google Scholar 

  12. http://www.cambridgesoft.com.

  13. http://www.rscb.org.

  14. TINKER – Software Tools for Molecular Design, Washington University, Saint Luis (2015); URL: http://dasher.wustl.edu/tinker/.

  15. Schrödinger Suite 2012, Schrödinger, LLC, New York (2012).

  16. J. H. Lii and N. L. Allinger, J. Am. Chem. Soc., 111, 8576–8582 (1989).

    Article  Google Scholar 

  17. CCLRC Computational Science and Engineering Department, DL_POLY; URL: http://www.cse.clrc.ac.uk.

  18. H. Tanaka, K. Nakanishi, and N. Watanabe, J. Chem. Phys., 78, 2626–2634 (1983).

    Google Scholar 

  19. V. A. Pomogaev and V. Ya. Artyukhov, Opt. Atm. Okeana, 15, No. 3, 240–243 (2002).

    Google Scholar 

  20. G. A. Kaminski, R. A. Friesner, J. Tirado-Rives, and W. L. Jorgensen, J. Phys. Chem., B105, 6474–6487 (2001).

    Google Scholar 

  21. W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, et al., J. Chem. Phys., 79, 926–935 (1983).

    Article  ADS  Google Scholar 

  22. M. E. Tuckerman, B. J. Berne, and A. Rossi, J. Chem. Phys., 94, 1465–1469 (1991).

    Google Scholar 

  23. V. Ya. Artyukhov and A. I. Galeeva, Russ. Phys. J., 29, No. 11, 949–952 (1986).

  24. V. Ya. Artyukhov, T. N. Kopylova, L. G. Samsonova, et al., Russ. Phys. J., 51, No. 10, 1097–1111 (2008).

  25. F. Aquilante, L. De Vico, N. Ferré, et al., J. Comput. Chem., 31, 224–247 (2010).

    Article  Google Scholar 

  26. H. Du, R. A. Fuh, J. Li, et al., Photochem. Photobiol., 68, 141–142 (1998); URL: http://omlc.ogi.edu/spectra/PhotochemCAD/html/du98.html.

  27. E. S. Stern and C. J. Timmons, Electronic Absorption Spectroscopy in Organic Chemistry [Russian translation], Mir, Moscow (1974).

  28. Yu. P. Meshalkin, V. A. Pomogaev, and V. Ya. Artyukhov, Opt. Spektrosk., 95, No. 3, 403–407 (2003).

  29. L. He, H. Li, J. Fan, et al., Chem. Phys. Lett., 378, 263–268 (2003).

    Article  ADS  Google Scholar 

  30. H. Lin, J. A. Hunter, and J. Pfab, Chem. Phys. Lett., 210, 38–44 (1993).

    Article  ADS  Google Scholar 

  31. V. Ya. Artyukhov and V. A. Pomogaev, Russ. Phys. J., 43, No. 7, 590–600 (2000).

  32. S. Hirayama, J. Chem. Phys., 85, 6867–6873 (1986).

    Google Scholar 

  33. D. J. Li, M. Zhu, C. Xu, et al., Spectrochim. Acta, A78, 74–79 (2011).

    Article  ADS  Google Scholar 

  34. H. Xu, N. Yao, H. Xu, et al., Int. J. Mol. Sci., 14, 14185–14203 (2013).

    Article  Google Scholar 

  35. K. A. Majorek, P. J. Porebski, A. Dayal, et al., Mol. Immunol., 52, 174–182 (2012).

    Article  Google Scholar 

  36. F. Samari, B. Hemmateenejad, M. Shamsipur, et al., Inorg. Chem., 51, 3454–3464 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Pomogaev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 4, pp. 54–64, April, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pomogaev, V.A., Artyukhov, V.Y. Theoretical Investigation of the Optical Spectra of Organic Compounds in Natural Surrounding. Russ Phys J 59, 525–535 (2016). https://doi.org/10.1007/s11182-016-0802-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-016-0802-z

Keywords

Navigation