Skip to main content
Log in

The modeling of the absorption lineshape for embedded molecules through a polarizable QM/MM approach

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

We present a computational strategy to simulate the absorption lineshape of a molecule embedded in a complex environment by using a polarizable QM/MM approach. This strategy is presented in two alternative formulations, one based on a molecular dynamics simulation of the structural fluctuations of the system and the other using normal modes and harmonic frequencies calculated on optimized geometries. The comparison for the case of a chromophore within a strongly inhomogeneous and structured environment, namely the intercalation pocket of DNA, shows that the MD-based approach is able to reproduce the experimental spectral bandshape. In contrast, the static approach overestimates the vibronic coupling, resulting in a much broader band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Santoro and D. Jacquemin, WIREs Comput. Mol. Sci., 2016, 6, 460–486.

    Article  CAS  Google Scholar 

  2. C. J. Cramer and D. G. Truhlar, Chem. Rev., 1999, 99, 2161–2200.

    Article  CAS  PubMed  Google Scholar 

  3. J. Tomasi, B. Mennucci and R. Cammi, Chem. Rev., 2005, 105, 2999–3094.

    Article  CAS  PubMed  Google Scholar 

  4. J. M. H. Olsen and J. Kongsted, in Advances in Quantum Chemistry, ed. J.R. Sabin and E. Brandas, Academic Press, 2011, vol. 61, pp. 107–143.

    Article  CAS  Google Scholar 

  5. M. S. Gordon, D. G. Fedorov, S. R. Pruitt and L. V. Slipchenko, Chem. Rev., 2012, 112, 632–672.

    Article  CAS  PubMed  Google Scholar 

  6. B. Mennucci, Phys. Chem. Chem. Phys., 2013, 15, 6583–6512.

    Article  CAS  PubMed  Google Scholar 

  7. F. J. A. Ferrer, R. Improta, F. Santoro and V. Barone, Phys. Chem. Chem. Phys., 2011, 13, 17007–17012.

    Article  CAS  Google Scholar 

  8. N. De Mitri, S. Monti, G. Prampolini and V. Barone, J. Chem. Theory Comput., 2013, 9, 4507–4516.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. A. Charaf-Eddin, A. Planchat, B. Mennucci, C. Adamo and D. Jacquemin, J. Chem. Theory Comput., 2013, 9, 2749–2760.

    Article  CAS  PubMed  Google Scholar 

  10. A. Petrone, J. Cerezo, F. J. A. Ferrer, G. Donati, R. Improta, N. Rega and F. Santoro, J. Phys. Chem. A, 2014, 119, 5426–5438.

    Article  CAS  Google Scholar 

  11. B. Mennucci, Int. J. Quantum Chem., 2015, 115, 1202–1208.

    Article  CAS  Google Scholar 

  12. T. J. Zuehlsdorff and C. M. Isborn, J. Chem. Phys., 2018, 148, 024110.

    Article  CAS  PubMed  Google Scholar 

  13. H. M. Senn and W. Thiel, Angew. Chem., 2009, 48, 1198–1229.

    Article  CAS  Google Scholar 

  14. E. Brunk and U. Rothlisberger, Chem. Rev., 2015, 115, 6217–6263.

    Article  CAS  PubMed  Google Scholar 

  15. S. Mukamel, Principles of Nonlinear Optical Spectroscopy, Oxford University Press, New York, 1995.

    Google Scholar 

  16. Y. Georgievskii, C.-P. Hsu and R. A. Marcus, J. Chem. Phys., 1999, 110, 5307–5317.

    Article  CAS  Google Scholar 

  17. S. Valleau, A. Eisfeld and A. Aspuru-Guzik, J. Chem. Phys., 2012, 137, 224103.

    Article  PubMed  CAS  Google Scholar 

  18. M. C. Zwier, J. M. Shorb and B. P. Krueger, J. Comput. Chem., 2007, 28, 1572–1581.

    Article  CAS  PubMed  Google Scholar 

  19. S. Chandrasekaran, M. Aghtar, S. Valleau, A. Aspuru-Guzik and U. Kleinekathöfer, J. Phys. Chem. B, 2015, 119, 9995–10004.

    Article  CAS  PubMed  Google Scholar 

  20. C. W. Kim, J. W. Park and Y. M. Rhee, J. Phys. Chem. Lett., 2015, 6, 2875–2880.

    Article  CAS  PubMed  Google Scholar 

  21. A. M. Rosnik and C. Curutchet, J. Chem. Theory Comput., 2015, 11, 5826–5837.

    Article  CAS  PubMed  Google Scholar 

  22. M. K. Lee, P. Huo and D. F. Coker, Annu. Rev. Phys. Chem., 2016, 67, 639–668.

    Article  CAS  PubMed  Google Scholar 

  23. O. Andreussi, I. G. Prandi, M. Campetella, G. Prampolini and B. Mennucci, J. Chem. Theory Comput., 2017, 13, 4636–4648.

    Article  CAS  PubMed  Google Scholar 

  24. M. K. Lee and D. F. Coker, J. Phys. Chem. Lett., 2016, 7, 3171–3178.

    Article  CAS  PubMed  Google Scholar 

  25. F. Segatta, L. Cupellini, S. Jurinovich, S. Mukamel, M. Dapor, S. Taioli, M. Garavelli and B. Mennucci, J. Am. Chem. Soc., 2017, 139, 7558–7567.

    Article  CAS  PubMed  Google Scholar 

  26. J. W. Ponder, C. Wu, P. Ren, V. S. Pande, J. D. Chodera, M. J. Schnieders, I. Haque, D. L. Mobley, D. S. Lambrecht, R. A. DiStasio Jr., M. Head-Gordon, G. N. I. Clark, M. E. Johnson and T. Head-Gordon, J. Phys. Chem. B, 2010, 114, 2549–2564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. B. T. Thole, Chem. Phys., 1981, 59, 341–350.

    Article  CAS  Google Scholar 

  28. D. Loco, L. Lagardère, S. Caprasecca, F. Lipparini, B. Mennucci and J.-P. Piquemal, J. Chem. Theory Comput., 2017, 13, 4025–4033.

    Article  CAS  PubMed  Google Scholar 

  29. A. M. N. Niklasson, P. Steneteg, A. Odell, N. Bock, M. Challacombe, C. J. Tymczak, E. Holmström, G. Zheng and V. Weber, J. Chem. Phys., 2009, 130, 214109.

    Article  PubMed  CAS  Google Scholar 

  30. M. F. S. J. Menger, S. Caprasecca and B. Mennucci, J. Chem. Theory Comput., 2017, 13, 3778–3786.

    Article  CAS  PubMed  Google Scholar 

  31. D. Case, J. Berryman, R. Betz, D. Cerutti, T. Cheatham III, T. Darden, R. Duke, T. Giese, H. Gohlke, A. Goetz, N. Homeyer, S. Izadi, P. Janowski, J. Kaus, A. Kovalenko, T. Lee, S. LeGrand, P. Li, T. Luchko, R. Luo, B. Madej, K. Merz, G. Monard, P. Needham, H. Nguyen, H. Nguyen, I. Omelyan, A. Onufriev, D. Roe, A. Roitberg, R. Salomon-Ferrer, C. Simmerling, W. Smith, J. Swails, R. Walker, J. Wang, R. Wolf, X. Wu, D. York and P. Kollman, AMBER 2016, University of California, San Francisco, 2016.

    Google Scholar 

  32. H. P. Spielmann, D. E. Wemmer and J. P. Jacobsen, Biochemistry, 1995, 34, 8542–8553.

    Article  CAS  PubMed  Google Scholar 

  33. D. Loco, É. Polack, S. Caprasecca, L. Lagardère, F. Lipparini, J.-P. Piquemal and B. Mennucci, J. Chem. Theory Comput., 2016, 12, 3654–3661.

    Article  CAS  PubMed  Google Scholar 

  34. J. W. Ponder, TINKER, Software Tools for Molecular Design, http://dasher.wustl.edu/tinker.

  35. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, B. G. Janesko, F. Lipparini, G. Zheng, J. L. Sonnenberg, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, T. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, P. V. Parandekar, N. J. Mayhall, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian Development Version, Revision H.36, Gaussian Inc., Wallingford, CT, 2010.

    Google Scholar 

  36. L. W. Chung, W. M. C. Sameera, R. Ramozzi, A. J. Page, M. Hatanaka, G. P. Petrova, T. V. Harris, X. Li, Z. Ke, F. Liu, H.-B. Li, L. Ding and K. Morokuma, Chem. Rev., 2015, 115, 5678–5796.

    Article  CAS  PubMed  Google Scholar 

  37. S. Caprasecca, S. Jurinovich, L. Viani, C. Curutchet and B. Mennucci, J. Chem. Theory Comput., 2014, 10, 1588–1598.

    Article  CAS  PubMed  Google Scholar 

  38. A. N. Glazer and H. S. Rye, Nature, 1992, 359, 859–861.

    Article  CAS  PubMed  Google Scholar 

  39. H. S. Rye, S. Yue, D. E. Wemmer, M. A. Quesada, R. P. Haugland, R. A. Mathies and A. N. Glazer, Nucleic Acids Res., 1992, 20, 2803–2812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. E. Privat, T. Melvin, F. Mérola, G. Schweizer, S. Prodhomme, U. Asseline and P. Vigny, Photochem. Photobiol., 2002, 75, 201–210.

    Article  CAS  PubMed  Google Scholar 

  41. J. Nygren, N. Svanvik and M. Kubista, Biopolymers, 1998, 46, 39–51.

    Article  CAS  PubMed  Google Scholar 

  42. A. Biancardi, T. Biver, A. Marini, B. Mennucci and F. Secco, Phys. Chem. Chem. Phys., 2011, 13, 12595–12602.

    Article  CAS  PubMed  Google Scholar 

  43. E. E. Rastede, M. Tanha, D. Yaron, S. C. Watkins, A. S. Waggoner and B. A. Armitage, Photochem. Photobiol. Sci., 2015, 14, 1703–1712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

MM gratefully acknowledges financial support from the EU Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No. 642294 (ITN-EJD: Theoretical Chemistry and Computational Modelling).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daniele Loco or Benedetta Mennucci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loco, D., Jurinovich, S., Cupellini, L. et al. The modeling of the absorption lineshape for embedded molecules through a polarizable QM/MM approach. Photochem Photobiol Sci 17, 552–560 (2018). https://doi.org/10.1039/c8pp00033f

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp00033f

Navigation