Skip to main content
Log in

Self-Diffusion Process in an FCC Crystal Caused by the Passage of a Shock Wave

  • Published:
Russian Physics Journal Aims and scope

The method of molecular dynamics is used to investigate the self-diffusion processes in the nickel lattice activated by a shock wave. It is demonstrated that the main self-diffusion mechanism is crowdion one. Ranges of shock wave velocities are established in which anomalous decrease of the self-diffusion coefficient caused by the formation of crowdion complexes is observed. In addition, it is demonstrated that when the wave velocity increases, the self-diffusion coefficients approach values corresponding to those of the metal in the liquid state, and the defect migration energy decreases. These results are compared with the data obtained for the crystal lattice with a structural defect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Kalinichenko and V. E. Strel’nitskii, Vopr. Atomn. Nauki Tekhn. Ser. Fiz. Radiats. Povr. Radiats. Materialoved., 88, No. 5, 159–163 (2005).

    Google Scholar 

  2. V. V. Ovchinnikov, Usp. Fiz. Nauk, 178, No. 9, 991–1001 (2008).

    Google Scholar 

  3. Yu. V. Martynenko and P. G. Moskovkin, Neorgan. Mater., 34, No. 9, 1142–1144 (1998).

    Google Scholar 

  4. A. V. Markidonov, M. D. Starostenkov, and A. V. Yashin, Fund. Probl. Sovrem. Materialoved., 10, No. 1, 12–21 (2013).

    Google Scholar 

  5. M. D. Starostenkov, A. V. Markidonov, and E. P. Pavlovskaya, Vestn. Tambovsk. Univ. Ser. Estestv. Tekh. Nauki, 18, No. 4, Part 2, 1741–1743 (2013).

  6. A. V. Markidonov, M. D. Starostenkov, and E. P. Pavlovskaya, Khim. Fiz. Mezoskop., 15, No. 3, 370–377 (2013).

    Google Scholar 

  7. XMD – Molecular Dynamics for Metals and Ceramics [Electronic resource], Mode of Access: http://xmd.sourceforge.net/about.html.

  8. R. A. Johnson, Phys. Rev., B37, No. 8, 3924–3931 (1988).

    Article  ADS  Google Scholar 

  9. V. G. Chudinov, R. M. J. Cotterill, and V. V. Andreev, Phys. Status Solidi, A122, No. 1, 111–120 (1990).

    Article  ADS  Google Scholar 

  10. R. I. Garber and A. I. Fedorenko, Usp. Fiz. Nauk, 83, No. 3, 385–432 (1964).

    Article  Google Scholar 

  11. I. S. Grigor’ev and E. Z. Meilikhov, Physical Quanttities: A Handbook [in Russian], Energoatomizdat, Moscow (1991).

    Google Scholar 

  12. G. M. Poletaev and M. D. Starostenkov, Fiz. Tverd. Tela, 52, No. 6, 1075–1082 (2010).

    Google Scholar 

  13. A. V. Markidonov, M. D. Starostenkov, A. I. Potekaev, et al., Russ. Phys. J., 54, No. 11, 1241–1248 (2011).

    Article  Google Scholar 

  14. A. V. Markidonov, G. M. Poletaev, and M. D. Starostenkov, Fund. Probl. Sovr. Materialoved., 9, No. 2, 201–208 (2012).

    Google Scholar 

  15. B. S. Bokshtein, S. Z. Bokshtein, and A. A. Zhukhovitskii, Diffusion Thermodynamics and Kinetics in Solids [in Russian], Metallurgiya, Moscow (1974).

    Google Scholar 

  16. F. J. Cherne and M. I. Baskes, Phys. Rev., B65, No. 2, 024209–024218 (2001).

    Article  ADS  Google Scholar 

  17. M. Gieb, J. Heieck, and W. Shüle, J. Nucl. Mater., 225, 85–96 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Markidonov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 6, pp. 80–84, June, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markidonov, A.V., Starostenkov, M.D. & Smirnova, M.V. Self-Diffusion Process in an FCC Crystal Caused by the Passage of a Shock Wave. Russ Phys J 58, 828–832 (2015). https://doi.org/10.1007/s11182-015-0576-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-015-0576-8

Keywords

Navigation