Skip to main content
Log in

Microplastic deformation of submicrocrystalline and coarse-grained titanium at room and elevated temperatures

  • Published:
Russian Physics Journal Aims and scope

Results obtained from a comparison study on the deformation behavior of submicrocrystalline and coarsegrained titanium in the temperature interval 295–773 K are presented. The microplastic strain mechanisms underlying a change in the deformation behavior of submicrocrystalline titanium in the melting temperature interval 0.35–0.40 Т m and a reduction in the strain hardening effect due to formation of submicrocrystalline structure of the material are examined. A multiscale model for development of microplastic deformation in submicrocrystalline metals and alloys is offered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Zwicker, Titan und Titanlegierungen, Berlin-Heidelberg-New York, Springer-Verlag (1974).

    Google Scholar 

  2. M. V. Maltsev, Metallography of Refractory, Rare, and Radioactive Metals and Alloys [in Russian], Metallurgiya, Moscow (1971).

    Google Scholar 

  3. A. A. Il’in, B. A. Kolachev, and I. S. Pol’kin, Titanium Alloys. Composition, Structure, Properties. Handbook [in Russian], VILS-MATI (2009).

  4. A. V. Tarasov, Titanium Metallurgy [in Russian], IKTs “Akademkniga” (2003).

  5. V. N. Moiseev, Metalloved. Termich. Obrab. Met., No. 8 (602), 23–29 (2005).

  6. R. Z. Valiev and I. A. Alexandrov, Nanostructured Materials Produced by Severe Plastic Deformation [in Russian], Logos, Moscow (2000).

    Google Scholar 

  7. Yu. R. Kolobov, R. Z. Valiev, G. P. Grabovetskaya, et al., Grain-Boundary Diffusion and Properties of Nanostructured Materials [in Russian], Nauka, Novosibirsk (2001).

    Google Scholar 

  8. N. I. Noskova and R. R. Mulyukov, Submicrocrystalline and Nanocrystalline Metals and Alloys [in Russian], UrB RAS, Ekaterinburg (2003).

    Google Scholar 

  9. R. Z. Valiev and I. A. Alexandrov, Bulk Nanostructured Metallic Materials: Production, Structure, and Properties [in Russian], IKTs “Akademkniga”, Moscow (2007).

    Google Scholar 

  10. V. V. Stolyarov, Y. T. Zhu, T. C. Lowe, and R. Z. Valiev, Mater. Sci. Eng. А., 303, No. 1, 82–89 (2001).

    Article  Google Scholar 

  11. Yu. R. Kolobov, O. A. Kashin, E. F. Dudarev, et al., Promising Technologies of Dimensional Physical-Chemical Machining and Formation of Service Properties of Metals and Alloys: Collected papers [in Russian], UGATU, Ufa (2001) pp. 384–388.

    Google Scholar 

  12. S. P. Malysheva, R. M. Galeev, S. V. Zherebtsov, and G. A. Salishchev, Fiz. Tekhn. Vys. Davl., 12, No. 4, 66–75 (2002).

    Google Scholar 

  13. A. V. Sergueeva, V. V. Stolyarov, R. Z. Valiev, and A. K. Mukherjee, Scripta Mater., 25, 747–752 (2001).

    Google Scholar 

  14. Yu. R. Kolobov, O. A. Kashin, E. E. Sagymbaev, et al., Russ. Phys. J., 43, No. 1, 71 – 78 (2000).

    Article  Google Scholar 

  15. V. V. Stolyarov, Y. T. Zhu, I. V. Alexandrov, et al., Mater. Sci. Eng. A., 343, Nos. 1–2, 43–50 (2003).

    Google Scholar 

  16. O. A. Kashin, E. F. Dudarev, Yu. R. Kolobov, et al., Materialoved, No. 8, 25–30 (2003).

  17. E. F. Dudarev, G. P. Bakach, and G. P. Grabovetskaya, Russ. Phys. J., 47, No. 9, 924 – 936 (2004).

    Google Scholar 

  18. O. A. Kashin, E. F. Dudarev, G. P. Grabovetskaya, et al., Trans. VI All-Russian Conf. Phys. Ultrafine-Grained (Nano) Sys. [in Russian], MIFI, Moscow (2003) pp. 168–172.

    Google Scholar 

  19. E. F. Dudarev, G. P. Grabovetskaya, Yu. R. Kolobov, et al., Metally, No. 1, 87–95 (2004).

  20. G. P. Grabovetskaya, Yu. R. Kolobov, and N. V. Girsova, Fiz. Met. Metalloved., 98, No. 6, 90–97 (2004).

    Google Scholar 

  21. G. I. Raab, G. V. Kulyasov, and R. Z. Valiev, Metally, No. 2, 36–40 (2004).

  22. N. I. Noskova, I. A. Pereturina, V. V. Stolyarov, and O. A. Elkina, Fiz. Met. Metalloved., 97, No. 5, 106–112 (2004).

    Google Scholar 

  23. Yu. P. Sharkeev, A. Yu. Eroshenko, A. D. Bratchikov, et al., Fiz. Mesomekh., 8, 91–94, Spec. issue (2005).

    Google Scholar 

  24. G. Kh. Sadikova, V. V. Latysh, I. P. Semenova, and R. Z. Valiev, Metalloved. Termich. Obrab. Met., No. 11 (605), 31–34 (2005).

  25. R. Z. Valiev, G. I. Raab, D. V. Gunderov, et al., Nanontekhnika, No. 2, 32–43 (2006).

  26. G. A. Salishchev, R. M. Galeev, S. P. Malysheva, et al., Metalloved. Term. Obrab. Met., No. 2 (608), 19–26 (2006).

  27. S. G. Psakhie, E. F. Dudarev, O. A. Kashin, et al., Voprosy Materialoved., No. 4 (52), 208–213 (2007).

  28. I. P. Semenova, R. Z. Valiev, E. B. Yakushina, et al., J. Mater. Sci., 43, Nos. 23–24, 7354–7359 (2008).

    Article  ADS  Google Scholar 

  29. I. P. Semenova, A. M. Korshunov, G. Kh. Salimgareeva, et al., Fiz. Met. Metalloved., 106, No. 2, 1–9 (2008).

    Google Scholar 

  30. G. I. Raab, A. V. Polyakov, D. V. Gunderov, and R. Z. Valiev, Metally, No. 5, 57–62 (2009).

  31. A. Yu. Eroshenko, Yu. P. Sharkeev, A. I. Tolmachev, et al., Perspect. Mater., Special issue, No. 7, 107–112 (2009).

  32. S. Zherebtsov, G. Salishchev, W. Eojkowski, et al., Mater. Sci. Eng. A., 527, Nos. 21 – 22, 5596–5603 (2010).

    Google Scholar 

  33. P. Semenova, G. H. Salimgareeva, G. Da Costa, et al., Adv. Eng. Mater., 12, No. 8, 803 – 807 (2010).

    Article  Google Scholar 

  34. R. Z. Valiev, Ross. Nanotekh., 1, Nos. 1–2, 208–216 (2006).

    Google Scholar 

  35. A. G. Rakhshdadt, Spring Steels and Alloys [in Russian], Metallurgiya, Moscow (1971).

    Google Scholar 

  36. M. L. Khenkin and I. Kh. Lokshin, Dimensional Stability of Metals and Alloys in Engineering and Instrument Engineering [in Russian], Mashinostroyeniye, Moscow (1974).

    Google Scholar 

  37. E. F. Dudarev, Microplastic Deformation and Yield Strength of Polycrystals [in Russian], Tomsk University Press, Tomsk (1988).

    Google Scholar 

  38. E. F. Dudarev, O. A. Kashin, Yu. R. Kolobov, et al., Russ. Phys. J., 41, No. 12, 1188–1192 (1998).

    Article  Google Scholar 

  39. Yu. R. Kolobov, O. A. Kashin, E. E. Sagymbaev, et al., Russ. Phys. J., 43, No. 1, 71–78 (2000).

    Article  Google Scholar 

  40. O. A. Kashin, E. F. Dudarev, and Yu. R. Kolobov, Structural-Phase States and Properties of Metallic Systems [in Russian], NTL, Tomsk (2004).

    Google Scholar 

  41. E. F. Dudarev, G. P. Pochivalova, Yu. R. Kolobov, et al., Russ. Phys. J., 47, No. 6, 617–625 (2004).

    Article  Google Scholar 

  42. V. A. Romanova, Modeling of Deformation and Fracture Processes in Three-Dimensional Heterogeneous Materials [in Russian], Doctoral thesis in physical and mathematical sciences, Institute of Strength Physics and Materials Science SB RAS, Tomsk (2008).

  43. E. F. Dudarev, G. P. Pochivalova, and G. P. Bakach, Phys. Mesomech., 2, Nos. 1–2, 99–106 (1999).

    Google Scholar 

  44. E. F. Dudarev and Ye. Ye. Deryugin, Russ. Phys. J., 25, No. 6, 510–519 (1982).

    Google Scholar 

  45. Ye. Ye. Deryugin, A Method of Relaxation Elements [in Russian], Nauka, Novosibirsk (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. F. Dudarev.

Additional information

Translated from Izvestiya Vysshykh Uchebnykh Zavedenii, Fizika, No. 7, pp. 88–97, July 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dudarev, E.F., Pochivalova, G.P., Kolobov, Y.R. et al. Microplastic deformation of submicrocrystalline and coarse-grained titanium at room and elevated temperatures. Russ Phys J 55, 825–834 (2012). https://doi.org/10.1007/s11182-012-9886-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-012-9886-2

Keywords

Navigation