Skip to main content
Log in

The Gruneisen parameter for silver azide

  • Published:
Russian Physics Journal Aims and scope

A first-principle procedure is proposed to determine the Gruneisen parameter for a crystal by calculating the external pressure and the vibration spectrum as functions of the volume of a unit cell. In the gradient approximation of the electron density functional theory, on the basis of a linear combination of atomic orbitals, the elastic and the thermodynamic Gruneisen parameters of silver azide, which decrease with volume (with increasing pressure), are calculated with the use of the CRYSTAL09 code. The equilibrium values of the parameter γ0 for various cold equations of state of crystals and for the thermodynamic models used are, respectively, ~2.3 and 1.6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Lisitsyn, V. I. Oleshko, and V. P. Tsipilev, Russ. Phys. J., No. 2, 109–116 (2005).

  2. V. M. Lisitsyn, V. I. Oleshko, Yu. N. Zhuravlev, et al., Khim. Fiz., 25, 59 (2006).

    Google Scholar 

  3. R. Dovesi, V. R. Saunders, C. Roetti, et al., CRYSTAL 09 User’s Manual, University of Torino Publ., Torino (2010).

    Google Scholar 

  4. J. P. Perdew and Y. Wang, Phys. Rev. B, 45, 13244 (1992).

    Article  ADS  Google Scholar 

  5. Internet resource: www.crystal.initio.it/Basic_Set/ptable.html.

  6. J. Shanker, B. P. Singh, and K. Jitendra, Cond. Matter Phys., 12, No. 2, 205 (2009).

    Article  Google Scholar 

  7. P. K. Singh, Indian J. Pure Appl. Phys., 48, 403 (2010).

    Google Scholar 

  8. L. Burakovsky and D. L. Preston, J. Phys. Chem. Solids, 65, No. 8/9, 1581 (2004).

    Article  ADS  Google Scholar 

  9. F. Birch, J. Geophys. Res., 83, 1257 (1978).

    Article  ADS  Google Scholar 

  10. P. Vinet, J. Ferrante, J. H. Rose, and J. R. Smith, J. Geophys. Res., 92, 9319 (1987).

    Article  ADS  Google Scholar 

  11. W. B. Holzapfel, Rep. Prog. Phys., 59, 29 (1996).

    Article  ADS  Google Scholar 

  12. J. H. Li, S. H. Liang, H. B. Guo, and B. X. Liu, Appl. Phys. Lett., 87, 194111 (2005).

    Article  ADS  Google Scholar 

  13. F. D. Stacey, B. J. Brennan, and R. D. Irvine, Geophys. Surv., 4, 189 (1981).

    Article  ADS  Google Scholar 

  14. J. Shanker, S. S. Kushwah, and P. Kumar, Physica B, 239, 337 (1997).

    Article  ADS  Google Scholar 

  15. R. E. Cohen, O. Gülseren, and R. J. Hemley, Am. Mineralogist, 85, 338 (2000).

    Google Scholar 

  16. A. B. Alchagirov, J. P. Perdew, J. C. Boettger, et al., Phys. Rev. B, 63, 224115 (2001).

    Article  ADS  Google Scholar 

  17. S. S. Kushwah and J. Shanker, Physica B, 253, 90 (1998).

    Article  ADS  Google Scholar 

  18. A. K. Pandey, Der Pharma Chemica, 1, No. 1, 78 (2009).

    Google Scholar 

  19. J. C. Slater, Introduction to Chemical Physics, McGraw Hill, New York (1935).

    Google Scholar 

  20. J. S. Dugdale and D. McDonald, Phys. Rev., 89, 832 (1953).

    Article  ADS  Google Scholar 

  21. V. N. Zubarev and V. Ya. Vaschenko, Fiz. Tverd. Tela, 5, 886 (1963).

    Google Scholar 

  22. L. Burakovsky, D. L. Preston, and Y. Wang, Solid State Commun., 132, No. 3/4, 151 (2004).

    Article  ADS  Google Scholar 

  23. Y. Zhang, X. Ke, C. Chen, et al., Phys. Rev. B, 80, 024304 (2009).

    Article  ADS  Google Scholar 

  24. A. M. Molodets, Fiz. Gor. Vzryva, 31, No. 5, 132 (1995).

    Google Scholar 

  25. G. Guo, Q. Wang, and T. C. W. Mak, J. Chem. Crystal., 29, No. 5, 561 (1999).

    Article  Google Scholar 

  26. W. B. Holzapfel, M. Hartwig, and W. Sievers, J. Phys. Chem. Ref. Data, 30, No. 2, 515 (2001).

    Article  ADS  Google Scholar 

  27. V. N. Belomestnykh, Pis’ma Zh. Tekh. Fiz., 30, No. 3, 14 (2004).

    Google Scholar 

  28. V. N. Belomestnykh, E. P. Tesleeva, and E. G. Soboleva, Zh. Tekh. Fiz., 79, No. 2, 153 (2009).

    Google Scholar 

  29. J. Bryant and R. Brooks, J. Chem. Phys., 54, No. 2, 5315 (1971).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. N. Zhuravlyov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 7, pp. 35–41. July, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhuravlyov, Y.N., Lisitsyn, V.M. The Gruneisen parameter for silver azide. Russ Phys J 54, 765–772 (2011). https://doi.org/10.1007/s11182-011-9681-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-011-9681-5

Keywords

Navigation