Skip to main content
Log in

Influence of topological transitions in a quantizing magnetic field and anisotropy of current carrier scattering by acoustic phonons on the longitudinal electrical conductivity of layered crystals with open fermi surfaces

  • Published:
Russian Physics Journal Aims and scope

It is demonstrated that the dependence of Fermi’s energy on the magnetic field causes a set of the Shubnikov – de Haas (SDH) oscillation frequencies to change, and their relative contribution to the total longitudinal conductivity of layered crystals depends on whether the scattering of current carriers is isotropic or anisotropic. Owing to the topological transition in a strong magnetic field, Fermi’s surface (FS) is transformed from open into closed one and is compressed in the magnetic field direction. Therefore, in an ultraquantum limit, disregarding the Dingle factor, the longitudinal electrical conductivity of the layered crystal tends to zero as a reciprocal square of the magnetic field for the isotropic scattering and as a reciprocal cube of the magnetic field for the anisotropic scattering. All calculations are performed in the approximation of relaxation time considered to be constant versus the quantum numbers for the isotropic scattering and proportional to the longitudinal velocity of current carriers for the anisotropic scattering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. I. Kaganov, I. M. Lifshits, and K. D. Sinel’nikov, Zh. Eksp. Teor. Fiz., 32, 605–610 (1957).

    Google Scholar 

  2. D. Shoenberg, Magnetic Oscillations in Metals [Russian translation], Mir, Moscow (1986).

    Google Scholar 

  3. G. Ebert, K. von Klitzing, C. Probst, and K. Ploog, Solid State Commun., 44, 95–100 (1982).

    Article  ADS  Google Scholar 

  4. R. F. Fivaz, J. Phys. Chem. Solids, 28, 839–850 (1967).

    Article  ADS  Google Scholar 

  5. D. Grecu and V. Protopopescu, Rev. Roum. Phys., 18, 981–990 (1973).

    Google Scholar 

  6. P. V. Gorskii and V. M. Nitsovich, Ukr. Fiz. Zh., 26, 1528–1533 (1981).

    Google Scholar 

  7. S. I. Borisenko, Fiz. Tekh. Poluprovodn., 36, 861–868 (2002).

    Google Scholar 

  8. S. I. Borisenko, Fiz. Tekh. Poluprovodn., 38, 207–214 (2004).

    Google Scholar 

  9. G. Korn and T. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill, New York (1961).

    MATH  Google Scholar 

  10. I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Sums, Series, and Products [in Russian], Nauka, Moscow (1971).

    Google Scholar 

  11. A. Ishihara, Statistical Physics, Academic Press, New York (1971).

    Google Scholar 

  12. V. F. Gantmakher and I. B. Levinson, Scattering of Current Carriers in Metals and Semiconductors [in Russian], Nauka, Moscow (1984).

    Google Scholar 

  13. M. V. Kartsovnik, V. N. Laukhin, V. I. Nizhankovskii, and A. A. Ignat’ev, Pis’ma Zh. Eksp. Teor. Fiz., 47, 302–305 (1988).

    Google Scholar 

  14. M. V. Kartsovnik, P. A. Kononovich, V. N. Laukhin, and I. F. Shchegolev, Pis’ma Zh. Eksp. Teor. Fiz., 48, 498–501 (1988).

    ADS  Google Scholar 

  15. V. G. Peschanskii, Zh. Eksp. Teor. Fiz., 121, 1204–1216 (2002).

    Google Scholar 

  16. B. Laikhttman and D. Menashe, Phys. Rev., B52, 8974–8979 (1995).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Gorskii.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 10, pp. 79–90, October, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorskii, P.V. Influence of topological transitions in a quantizing magnetic field and anisotropy of current carrier scattering by acoustic phonons on the longitudinal electrical conductivity of layered crystals with open fermi surfaces. Russ Phys J 53, 1072–1085 (2011). https://doi.org/10.1007/s11182-011-9532-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-011-9532-4

Keywords

Navigation