Skip to main content
Log in

Investigation into MIS structures based on gradedband-gap hetero-epitaxial HgCdTe grown by molecular-beam epitaxy using photo-emf and conductivity methods

  • Physics of semiconductors and dielectrics
  • Published:
Russian Physics Journal Aims and scope

The effect of graded-band-gap layers on the differential resistance of space-charge region in MIS structures based on MBE HgCdTe (x = 0.225) is examined. It is shown that the effect of resistance of the epitaxial-film bulk on the measured capacitance and resistance should be taken into account for correct determination of space-charge region parameters. The presence of near-surface layers with increased Cd contents results in an increase in the resistance of the space-charge region in strong inversion. The product of semiconductor resistance by area as high as 15 Ω⋅cm2 is obtained despite suppression of tunnel generation-recombination through deep levels in MIS structures with graded-band-gap layers. This might be due to background photogeneration and diffusion of minority charge carriers. The mechanisms for limitation of the differential resistance of space-charge region at different temperatures are discussed for n-HgCdTe (x = 0.225 and 0.292) and p-HgCdTe (x = 0.225).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. N. Ovsyuk, G. L. Kuryshev, Yu. G. Sidorov, et al., IR Photodetector Arrays [in Russian], Nauka, Novosibirsk, 2001.

    Google Scholar 

  2. A. V. Voitsekhovskii, S. N. Nesmelov, and S. M. Dzyadukh, Russ. Phys. J., No. 6, 584 (2005).

  3. A. V. Voitsekhovskii, S. N. Nesmelov, S. M. Dzyadukh et al., Fiz. Tekh. Poluprovodn., No. 11, 1327 (2008).

  4. M. A. Kinch, Semicond. Semimet., 18, 313 (1981).

    Article  Google Scholar 

  5. A. Rogalski, Infrared Detectors [Russian translation], Nauka, Novosibirsk, 2003.

    Google Scholar 

  6. V. Dhar, R. Ashokan, Z. A. D. Khan, and P. K. Basu, Semicond. Sci. Technol., No. 11, 1077 (1996).

  7. V. Gopal, S.Gupta, R. K. Bhan et al., Infrared Physics and Technology, 44, 143 (2003).

    Article  ADS  Google Scholar 

  8. A. V. Yartsev, Autometry, 43, No. 4, 83 (2007).

    Google Scholar 

  9. V. V. Antonov, Investigation into Electrical-Physical and Photoelectrical Characteristics of МОF-Structures Based on HgCdTe: Diss. Kand. Fiz. Mat. Nauk, Tomsk, 1985.

  10. A. V. Voitsekhovskii and V. N. Davydov, Photoelectrical MIS-Structures from Narrow-Band Semiconductors [in Russian], Radio i Svyaz’, Tomsk, 1990.

    Google Scholar 

  11. W. He and Z. Celik-Butler, Solid-State Electron., 39, No. 1, 127 (1996).

    Article  ADS  Google Scholar 

  12. J. P. Rosbeck and E. R. Blazejewski, J. Vacuum Science & Technology. A, 3, No. 1, 280 (1985).

    Article  ADS  Google Scholar 

  13. M. A. Kinch, J. D. Beck, and W. T. Zwirble, in: Proc. Int. Electron Devices Meet., Washington, New York, 1980.

  14. V. V. Vasil’ev and Yu. P. Mashukov, Fiz. Tekh. Poluprovodn., 41, No. 1, 38 (2007).

    Google Scholar 

  15. V. N. Ovsyuk and A. V. Yartsev, Appl. Phys. No. 5, 80 (2007).

    Google Scholar 

  16. V. I. Gaman, Physics of Semiconductor Devices [in Russian], Izd. Nauchn. Tekhn. Literatury, Tomsk, 2000.

    Google Scholar 

  17. R. S. Nakhmanson, Solid State Electron., 19, 745 (1976).

    Article  ADS  Google Scholar 

  18. A. V. Voitsekhovskii, S. N. Nesmelov, S. M. Dzyadukh et al, Russ. Phys. J., No. 10, 1117 (2006).

  19. B. S. Kerner, V. V. Osipov, O. V. Smolin, and A. N. Sukhanov, Reviews on Electronic Devices, ser. 2, Semiconductor Devices, No. 8, 3 (1989).

  20. J. S. Blakemore, Semiconductor Statistics, Pergamon, London, 1962.

    MATH  Google Scholar 

  21. J. M. Lloyd, Thermal Imaging Systems, Plenum, New York, 1975.

    Google Scholar 

  22. R. K. Bian and V. Dhar, Infrared Physics & Technology, 41, 155 (2000).

    Article  ADS  Google Scholar 

  23. V. L. Bonch-Bruevich and S. G. Kalashnikov, Semiconductor Physics [in Russian], Nauka, Moscow, 1990.

    Google Scholar 

  24. P. A. Borodovski, A. F. Bulygin, and V. S. Varavin, Fiz. Tekh. Poluprovodn., 32, No. 9, 1076 (1998).

    Google Scholar 

  25. O. P. Agnihorti, C. A. Musca, and L. Faraone, Semicond. Sci. Technol., No. 13, 839 (1998).

  26. D. G. Ikusov, F. F. Sizov, S. V. Staryi, and V. V. Teterkin, Fiz. Tekh. Poluprovodn., 41, No. 2, 134 (1998).

    Google Scholar 

  27. G. H. Tsau, A. Sher, M. Madou, et al., J. Appl. Phys., 59, No. 4, 1238 (1986).

    Article  ADS  Google Scholar 

  28. A. V. Yartsev, in: Book of Abstr. 19 Int. Sci. Tekhn. Conf. On Photoelectronics and Night-Vision Devices, Moscow, 2006.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Voitsekhovkii.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 10, pp. 3–18, October, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voitsekhovkii, A.V., Nesmelov, S.N. & Dzyadukh, S.M. Investigation into MIS structures based on gradedband-gap hetero-epitaxial HgCdTe grown by molecular-beam epitaxy using photo-emf and conductivity methods. Russ Phys J 52, 1003–1020 (2009). https://doi.org/10.1007/s11182-010-9332-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-010-9332-2

Keywords

Navigation