Skip to main content
Log in

Diffusion and relaxation of the fractional order in fractal media in the classical and quantum cases

  • Elementary Particle Physics and Field Theory
  • Published:
Russian Physics Journal Aims and scope

Two model examples of the application of fractional calculus are considered. The Riemann–Liouville fractional derivative with 0 < α ≤ 1 was used. The solution of a fractional equation, which describes anomalous relaxation and diffusion in an isotropic fractal space, has been obtained in the form of the product of a Fox function by a Mittag-Leffler function. The solution is simpler than that given in Ref. 6 and it generalizes the result reported in Ref. 7. For the quantum case, a solution of the generalized Neumann–Kolmogorov fractional quantum-statistical equation has been obtained for an incomplete statistical operator which describes the random walk of a quantum spin particle, retarded in traps over a fractal space. The solution contains contributions from quantum Mittag-Leffler (nonharmonic) fractional oscillations, anomalous relaxation, noise fractional oscillations, and exponential fractional diffusion oscillation damping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. M. Zelenyi and A. M. Milovanov, Usp. Fiz. Nauk, 174, 809–852 (2004).

    Article  Google Scholar 

  2. V. V. Uchaikin, Ibid., 173, 847–874 (2003).

    Google Scholar 

  3. A. M. Nakhushev, Fractional Calculus and Its Application [in Russian], Fizmatlit, Moscow (2003).

    Google Scholar 

  4. S. G. Samko, A. A. Kilbas, and O. I. Marichev, Integrals and Fractional Derivatives and Some Their Applications [in Russian], Nauka i Tekhnika, Minsk (1987).

    MATH  Google Scholar 

  5. K. V. Chukbar, Zh. Eksper. Teor. Fiz., 108, 1875–1884 (1995).

    Google Scholar 

  6. V. L. Kobelev, E. N. Romanov, Ya. L. Kobelev, and L. Ya. Kobelev, Dokl. RAN, 361, 755–758 (1998).

    MathSciNet  Google Scholar 

  7. A. N. Kochubei, Different. Uravnen., 26, 660–672 (1990).

    MathSciNet  Google Scholar 

  8. I. V. Aleksandrov, Theory of Magnetic Relaxation [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  9. V. S. Kirchanov, Sov. Phys. J., No. 6, 449–451 (1985); Teor. Mat. Fiz., 148, 288–294 (2006).

  10. A. D. Polyanin, Reference-Book on Linear Equations of Mathematical Physics [in Russian], Fizmatlit, Moscow (2001).

    Google Scholar 

  11. H. Bateman and A. Erdèlyi, Higher Transcendental Functions, vol III: Lamè and Mathieu Elliptic and Automorphic Functions, McGraw Hill, NY (1953).

    Google Scholar 

  12. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marychev, Integrals and Series. Additional Chapters [in Russian], Nauka, Moscow (1986).

    Google Scholar 

  13. M. M. Dzhrbashyan, Integral Transforms and Representations in the Complex Domain [in Russian], Nauka, Moscow (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Kirchanov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 4, pp. 15–23, April, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirchanov, V.S. Diffusion and relaxation of the fractional order in fractal media in the classical and quantum cases. Russ Phys J 52, 343–353 (2009). https://doi.org/10.1007/s11182-009-9245-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-009-9245-0

Keywords

Navigation