Skip to main content
Log in

Deformational methods of material nanostructuring: Premises, history, state of the art, and prospects

  • Published:
Russian Physics Journal Aims and scope

Abstract

Brief history of origin and development of methods of deformational nanostructuring of materials (DNM) also referred to as methods of severe plastic deformation (SPD) are presented. Principles and efficiencies of the most widespread DNM methods — torsion under quasi-hydrostatic pressure (THP), equal channel angular pressing (ECAP), and hydrostatic isothermal forging (HIF) — are analyzed. Results of pioneer research of the structure and properties of nanomaterials produced by these methods are given. Prospects for the DNM application in industrial technologies of metal treatment and product manufacturing are indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Gleiter, Progr. Mater. Sci., 33, No. 4, 223–315 (1989).

    Article  Google Scholar 

  2. A. I. Gusev and A. A. Rempel’, Nanocrystalline Materials [in Russian], Fizmatlit, Moscow (2000).

    Google Scholar 

  3. N. I. Noskova and R. R. Mulyukov, Submicrocrystalline and Nanocrystalline Metals and Alloys [in Russian], Publishing House of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg (2003).

    Google Scholar 

  4. R. Z. Valiev and I. V. Aleksandrov, Bulk Nanostructural Materials: Synthesis, Structure, and Properties [in Russian], Nauka, Moscow (2007).

    Google Scholar 

  5. A. A. Nazarov and R. R. Mulyukov, in: Engineering and Technology Handbook, S. Lyshevski, D. Brenner, J. Iafrate, and W. Goddard, eds., CRC Press, Boca Raton (2002), pp. 22-1–22-41.

    Google Scholar 

  6. R. R. Mulyukov, Ross. Nanotekhnol., 2, Nos. 7–8, 38–53 (2007).

    Google Scholar 

  7. I. D. Morokhov, L. I. Trusov, and L. P. Chizhik, Ultradisperse Metal Media [in Russian], Atomizdat, Moscow (1977).

    Google Scholar 

  8. Y. Zhu and T. G. Langdon, J. Miner., Metals Mater. Soc., 56, No. 10, 58–64 (2004).

    Google Scholar 

  9. R. Z. Valiev, Y. Estrin, X. Horita, et al., J. Miner., Metals Mater. Soc., 58, 33–39 (2006).

    Google Scholar 

  10. N. A. Koneva and É. V. Kozlov, Russ. Phys. J., No. 2, 165 (1990).

  11. V. I. Trefilov, Yu. V. Mil’man, and S. A. Firstov, Physical Principles of Strength of Refractory Metals [in Russian], Naukova Dumka, Kiev (1975).

    Google Scholar 

  12. V. V. Rybin, Severe Plastic Deformations and Fracture of Metals [in Russian], Metallurgiya, Moscow (1986).

    Google Scholar 

  13. O. A. Kaibyshev, Superplasticity of Industrial Alloys [in Russian], Metallurgiya, Moscow (1984).

    Google Scholar 

  14. Zh. P. Puar’e, The High-Temperature Plasticity of Crystalline Bodies [Russian translation], Metallurgiya, Moscow (1982).

    Google Scholar 

  15. N. A. Smirnova, V. I. Levit, V. I. Pilyugin, et al., Fiz. Met. Metalloved., 61, 1170–1177 (1986).

    Google Scholar 

  16. N. A. Smirnova, V. I. Levit, V. I. Pilyugin, et al., Fiz. Met. Metalloved., 62, 566–570 (1986).

    Google Scholar 

  17. A. V. Korznikov, S. R. Idrisova, O. Dimitrov, et al., Fiz. Met. Metalloved., 85, No. 5, 91–95 (1998).

    Google Scholar 

  18. M. V. Degtyarov, T. I. Chashchukhina, L. M. Voronova, et al., Acta Mater., 55, 6039–6050 (2007).

    Article  Google Scholar 

  19. Y. H. Zhao, X. Z. Liao, Y. T. Zhu, et al., Mater. Sci. Eng., A410–A411, 188–193 (2005).

    Google Scholar 

  20. V. I. Kopylov and V. I. Chuvil’deev, in: Severe Plastic Deformation: toward Bulk Production of Nanostructured Materials, B. S. Altan, ed., Nova Science, New York (2006), pp. 37–58.

    Google Scholar 

  21. B. M. Segal, V. I. Reznikov, F. E. Drobyshevskii, and V. I. Kopylov, Izv. Akad. Nauk SSSR, Metally, No. 1, 115–123 (1981).

  22. V. M. Segal, Mater. Sci. Eng., A271, 322–333 (1999).

    Google Scholar 

  23. N. A. Akhmadeev, R. Z. Valiev, V. I. Kopylov, and R. R. Mulyukov, Metally, No. 5, 96–101 (1992).

  24. G. J. Raab, R. Z. Valiev, T. C. Lowe, and Y. T. Zhu, Mater. Sci. Eng., A382, 30–34 (2004).

    Google Scholar 

  25. D. A. Hughes, N. Hansen, and D. J. Bammann, Scripta Mater., 48, 147–153 (2003).

    Article  Google Scholar 

  26. Y. Iwahashi, Z. Horita, M. Nemoto, and T. G. Langdon, Acta Mater., 46, No. 9, 3317–3331 (2008).

    Article  Google Scholar 

  27. Y. T. Zhu and T. C. Lowe, Mater. Sci. Eng., A291, 46–53 (2000).

    Google Scholar 

  28. A. Gholinia, P. B. Prangnell, and M. V. Markushev, Acta Mater., 48, 1115–1130 (2000).

    Article  Google Scholar 

  29. J. H. Driver, Scripta Mater., 51, 819–823 (2004).

    Article  Google Scholar 

  30. G. Zhao, S. Xu, Y. Luan, et al., Mater. Sci. Eng., A437, 281–292 (2006).

    Google Scholar 

  31. R. O. Valiakhmetov, R. M. Galeev, and G. A. Salishchev, Fiz. Met. Metalloved., 72, No. 10, 204–206 (1990).

    Google Scholar 

  32. R. M. Imayev and V. M. Imayev, Scripta Met. Mater., 25, 2041–2046 (1991).

    Article  Google Scholar 

  33. G. A. Salishchev, O. R. Valiakhmetov, and R. M. Galeev, J. Mater. Sci., 28, 2898–2902 (1993).

    Article  Google Scholar 

  34. R. M. Imayev, V. M. Imayev, and G. A. Salishchev, J. Mater. Sci., 27, 4465–4471 (1992).

    Article  Google Scholar 

  35. S. V. Zherebtsov, G. A. Salishchev, R. M. Galeyev, et al., Scripta Mater., 51, 1147–1151 (2004).

    Article  Google Scholar 

  36. R. Z. Valiev, A. V. Korznikov, and R. R. Mulyukov, Mater. Sci. Eng., A168, 141–148 (1993).

    Google Scholar 

  37. R. Z. Valiev, A. V. Korznikov, and R. R. Mulyukov, Fiz. Met. Metalloved., 76, No. 4, 70–86 (1992).

    Google Scholar 

  38. R. Z. Valiev and R. S. Musalimov, Fiz. Met. Metalloved., 78, No. 6, 114–119 (1994).

    Google Scholar 

  39. R. Z. Valiev, R. R. Mulyukov, V. V. Ovchinnikov, et al., Metallofizika, 12, No. 5, 124–126 (1990).

    Google Scholar 

  40. L. R. Zubairov, E. A. Litvinov, R. R. Mulyukov, et al., Dokl. Ross. Akad. Nauk, 372, No. 3, 319–321 (2000).

    Google Scholar 

  41. R. R. Mulyukov, E. A. Litvinov, L. R. Zubairov, et al., Physica, B324, Nos. 1–4, 329–335 (2002).

    ADS  Google Scholar 

  42. E. A. Litvinov, R. R. Mulyukov, L. R. Zubairov, et al., Zh. Tekh. Fiz., 74, No. 6, 96–101 (2004).

    Google Scholar 

  43. A. A. Nazarov, A. E. Romanov, and R. Z. Valiev, Scripta Mater., 34, No. 5, 729–734 (1996).

    Article  Google Scholar 

  44. A. A. Nazarov, Scripta Mater., 37, No. 8, 1155–1161 (1997).

    Article  Google Scholar 

  45. G. A. Salishchev, R. M. Galeev, and S. R. Malysheva, Metalloved. Termich. Obrab. Met., No. 2, 19–26 (2006).

  46. G. A. Salishchev, O. R. Valiakhmetov, R. M. Galeev, and S. R. Malysheva, Metally, No. 4, 86–91 (1996).

  47. G. A. Salishchev, R. M. Galeev, S. V. Zherebtsov, et al., Metally, No. 6, 84–87 (1999).

  48. Sh. Kh. Mukhtarov, V. A. Valitov, and N. R. Dudova, Fizich. Mezomekh., 7, No. 2, 38–41 (2004).

    Google Scholar 

  49. R. M. Imayev, N. K. Gabdullin, G. A. Salishchev, et al., Acta Mater., 47, 1809–1821 (1999).

    Article  Google Scholar 

  50. R. Würschum, A. Kubler, S. Gruss, et al., Ann. Chim., 21, 471–482 (1996).

    Google Scholar 

  51. A. A. Nazarov, Phil. Mag. Lett., 80, No. 4, 221–228 (2000).

    Article  ADS  Google Scholar 

  52. A. A. Nazarov and R. T. Murzaev, TMS Lett., 3, No. 2, 29–30.

  53. N. A. Akhmadeev, R. Z. Valiev, N. P. Kobelev, et al., Fiz. Tverd. Tela, 34, No. 10, 3155–3160 (1992).

    Google Scholar 

  54. R. R. Mulyukov and A. I. Pshenichnyuk, J. Alloys Comp., 355, 26–30 (2003).

    Article  Google Scholar 

  55. R. Z. Valiev, R. R. Mulyukov, Kh. Ya. Mulyukov, et al., Pis’ma Zh. Tekh. Fiz., 15, No. 1, 78–81 (1989).

    Google Scholar 

  56. Kh. Ya. Mulyukov, G. F. Korznikova, and S. A. Nikitin, Fiz. Tverd. Tela, 37, No. 8, 2481–2486 (1995).

    Google Scholar 

  57. Kh. Ya. Mulyukov, G. F. Korznikova, R. Z. Abdulov, and R. Z. Valiev, J. Magn. Magn. Mater., 89, 207–213 (1990).

    Article  ADS  Google Scholar 

  58. V. V. Stolyarov, A. G. Popov, D. V. Gunderov, et al., Fiz. Met. Metalloved., 83, No. 2, 100–108 (1997).

    Google Scholar 

  59. G. F. Korznikova, Deform. Razr. Mater., No. 2, 25–29 (2006).

  60. G. F. Korznikova, Metalloved. Termich. Obrab. Mater., No. 2, 33–37 (2006).

  61. R. K. Islamgaliev, N. A. Akhmadeev, R. R. Mulyukov, and R. Z. Valiev, Metallofizika, No. 2, 317–320 (1990).

  62. R. R. Mulyukov and Yu. M. Yumaguzin, Dokl. Ross. Akad. Nauk, 399, No. 6, 730–732 (2004).

    Google Scholar 

  63. A. A. Kruglov, R. Ya. Lutfullin, M. Kh. Mukhametrakhimov, et al., Perspekt. Mater., No. 6, 79–85 (2005).

  64. R. Ya. Lutfullin, O. A. Kaibyshev, O. R. Valiakhmetov, et al., Perspekt. Mater., No. 4, 21–25 (2003).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. R. Mulyukov.

Additional information

__________

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 47–59, May, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mulyukov, R.R., Nazarov, A.A. & Imaev, R.M. Deformational methods of material nanostructuring: Premises, history, state of the art, and prospects. Russ Phys J 51, 492–504 (2008). https://doi.org/10.1007/s11182-008-9068-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-008-9068-4

Keywords

Navigation