Skip to main content
Log in

Structural features of aluminium alloy 1441 irradiated by Ar+ ions

  • Published:
Russian Physics Journal Aims and scope

Abstract

Using electron microscopy it was found that irradiation of clad cold-worked specimens made of commercial aluminium-lithium alloy 1441 by the Ar + ions of energy 40 keV at low doses of irradiation (1015 cm−2, irradiation time 1 s, T < 70 °C) and ion-current density of about 100 µA/cm2 results in the transformation of the cellular structure formed in the alloy under deformation. As the dose of irradiation is increased up to 1016 cm−2, a transition from a cellular to a subgrain structure close to a polygonal one is observed. The efficiency of the process is increased with ion-current density. Furthermore, under ion irradiation at increased ion-current densities, the β′(Al 3 Zr) and Al 8 Fe 2 Si particles present in the deformed alloy dissolve, and disperse particles of a new Al 2 LiMg phase of platelet shape are formed. The changes in the dislocation structure and phase composition in alloy 1441 are observed several seconds after irradiation not only in the surface layer adjacent to the ion incorporation band but also through the thickness of the specimen tens of thousands times greater than ion projective ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. N. Fridlyander, K. V. Chuistov, A. L. Berezina, and N. I. Kolobnev, Aluminium-Lithium Alloys. Structure and Properties [in Russian], Naukova Dumka, Kiiv, 1992.

    Google Scholar 

  2. B. A. Kolachev, V. I. Elagin, and V. A. Livanov, Physical Metallurgy and Thermal Treatment of Nonferrous Metals and Alloys [in Russian], Moscow Inst. Steel and Alloys, Moscow, 2001.

    Google Scholar 

  3. X. Rissel and I. Ruge, Ion Implantation, M. I. Guseva, ed., [Russian translation], Nauka, Moscow, 1983.

    Google Scholar 

  4. F. V. Nolfy, ed., Phase Transformations under Irradiation [Russian translation], Metallurgiya, Chelyabinsk, 1989.

    Google Scholar 

  5. B. Yu. Goloborodsky, V. V. Ovchinnikov, and V. A. Semenkin, Fusion Technology, 39, 1217 (2001).

    Google Scholar 

  6. A. N. Didenko, Yu. P. Sharkeev, E. B. Kozlov, and A. I. Ryabchikov, Long-Range Effects in Ion-Implanted Metallic Materials [in Russian], Izd. Nauchn. Tekhn. Literatury, Tomsk, 2004.

    Google Scholar 

  7. S. N. Borodin, E. Yu. Kreindel, G. A, Mesyatz, V. V. Ovchinnikov, et al., Pis’ma Zh. Tekhn. Fiz., 15, No. 17, 51 (1989).

    Google Scholar 

  8. Yu. E. Kreindel and V. V. Ovchinnikov, Vacuum, 42, No. 1/2, 81 (1990).

    Google Scholar 

  9. N. V. Gavrilov, S. P. Nikulin, and G. V. Radkovskii, Prib. and Tekhn. Eksper., No. 1, 93 (1996).

  10. H. Flower and P. Gregson, Mater. Sci. and Tech., 3, No. 2, 81 (1989).

    Google Scholar 

  11. J. Martin, Ann. Rev. Mater. Sci., 101 (1988).

  12. V. G. Rakin and N. I. Buinov, Fiz. Met. Metalloved., 111, No. 1, 59 (1961).

    Google Scholar 

  13. V. V. Sagaradze, S. V. Morozov, and V. A. Shabashov, et al., Fiz. Met. Metalloved., 66, No. 2, 328 (1988).

    Google Scholar 

  14. V. A. Shabashov, V. V. Sagaradze, S. V. Morozov, et al., Metallofizika, 2, No. 4, 107 (1990).

    Google Scholar 

  15. V. V. Sagaradze, V. A. Shabashov, T. M. Lapina, et al., Fiz. Met. Metalloved., 78, No. 6, 49 (1994).

    Google Scholar 

  16. V. V. Sagaradze, V. A. Shabashov, T. M. Lapina, V. M. Arbuzov, Fiz. Met. Metalloved., 78, No. 4, 88 (1994).

    Google Scholar 

  17. J. P. Biersack and L. G. Haggmark, Nucl. Instrum. and Methods, 174, 257 (1980).

    Article  Google Scholar 

  18. V. V. Ovchinnikov, Proc. XVI International Symposium on Discharges and Electrical Insulation in Vacuum, Moscow-St.Petersburg, SPIE 2259, 605 (1994).

    Google Scholar 

  19. V. V. Ovchinnikov and V. A. Erkabaev, Proc. VII International Workshop “Radiation Physics of Solids” Sevastopol’, 1998.

  20. V. Zhukov and A. Ryabenko, Radiation Effects, 82, 85 (1984).

    Article  Google Scholar 

  21. V. G. Chudinov, R. M. J. Cotterill, and V. V. Andreev, Metals. Phys. Stat. Sol. (A), 122, 111 (1990).

    Article  Google Scholar 

  22. A. N. Didenko, A. E. Ligachev, and I. B. Kurakin, Irradiation of Metal and Alloy Surfaces by Charged-Particle Beams [in Russian], Energoatomizdat, Moscow, 1987.

    Google Scholar 

  23. R. Honeycomb, Plastic Deformation of Metals, Mir, Moscow, 1972.

    Google Scholar 

  24. S. G. Psakhie, K. P. Zolnikov, R. I. Kadyrov, et al., Pis’ma Zh. Teor. Fiz., 25, No. 6, 7 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 2, pp. 73–81, February, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ovchinnikov, V.V., Gushchina, N.V., Makhin’ko, F.F. et al. Structural features of aluminium alloy 1441 irradiated by Ar+ ions. Russ Phys J 50, 177–186 (2007). https://doi.org/10.1007/s11182-007-0025-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-007-0025-4

Keywords

Navigation