Skip to main content
Log in

Effect of Medium-Energy Ar+ Ion Irradiation on the Structure of Austenitic Chromium–Nickel Steel

  • STRENGTH AND PLASTICITY
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The effect of 15-keV Ar+ ions on the structure of austenitic chromium-nickel steel in the 3.1 × 1017–7.5 × 1017 cm–2 fluence range has been investigated in this work. X-ray diffraction analysis indicates a nonmonotonous change in the lattice parameter and the level of microstresses in some crystallographic directions with increasing fluence. The anisotropy appearance of these stresses gradually decreases and the texture becomes weaker. These processes are associated with radiation defects at the initial stage of irradiation and their radiation-induced annealing as the fluence increases. Transmission electron microscopy has revealed atomic separation in the solid solution and a decrease in the dislocation density in the steel starting from a fluence of 5 × 1017 cm–2 (40 dpa). Similar data have been obtained when steel of a similar composition has been exposed to high-energy ions. No pore formation has been detected under the used irradiation conditions, since the swelling threshold (according to known estimates, ~70 dpa) has not been reached.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. V. I. Voronin, E. Z. Valiev, B. N. Goshchitskii, N. V. Proskurina, and I. F. Berger, “ Structural state of the claddings of fuel elements of the BN-600 reactor prepared from cold-deformed 16Cr–15Ni–2Mo–2Mn–Ti–V–B steel: study using the method of high-resolution neutron diffraction,” Phys. Met. Metallogr. 118, No. 2, 198–205 (2017).

    Article  CAS  Google Scholar 

  2. V. L. Arbuzov, B. N. Goshchitskii, S. E. Danilov, V. V. Sagaradze, A. V. Kozlov, and V. M. Chernov, “Influence of neutron and electron irradiation on structural-phase transformations in Fe–12Cr–2W–V–Ta–B steel processed under various heat treatment conditions,” Phys. Met. Metallogr. 120, No. 4, 366–370 (2019).

    Article  CAS  Google Scholar 

  3. S. E. Danilov and V. L. Arbuzov, “Structural changes during thermal and radiation impacts in a stainless steel alloyed with titanium,” Phys. Met. Metallogr. 120, No. 11, 1105–1108 (2019).

    Article  CAS  Google Scholar 

  4. S. Geri Vas, Fundamentals of Radiation Materials Science. Metals and Alloys (Tekhnosfera, Moscow, 2014) [in Russian].

    Google Scholar 

  5. G. S. Was and T. R. Allen, “Radiation damage from different particle types,” NATO Sci. Ser. II: Math., Phys. Chem. Radiat. Eff. Solids 235, 65–98 (2007).

    Article  Google Scholar 

  6. V. F. Zelenskii, I. M. Neklyudov, and T. P. Chernyaeva, Radiation Defects and Swelling of Metals (Nauk. dumka, Kiev, 1988) [in Russian].

  7. F. A. Garner, “Impact of the injected interstitial on the correlation of charged particle and neutron-induced radiation damage,” J. Nucl. Mater. 117, 177–197 (1983).

    Article  CAS  Google Scholar 

  8. V. V. Sagaradze, S. S. Lapin, M. A. Kirk, and B. N. Goshchitskii, “Influence of high-dose Kr+ irradiation on structural evolution and swelling of 16Cr–15Ni–3Mo–1Ti aging steel,” J. Nucl. Mater. 274, 287–298 (1999).

    Article  CAS  Google Scholar 

  9. V. V. Sagaradze, S. S. Lapin, B. N. Goshchitskii, and M. A. Kirk, “The structural evolution of new low-activation and chromium–nickel stainless steels under high-dose irradiation up to 200 dpa,” J. Nucl. Mater. 258263, 1675–1680 (1998).

  10. V. V. Sagaradze, S. S. Lapin, and M. A. Kirk, “Non-equilibrium intragrain concentration redistribution of the alloying elements in austenitic steels under irradiation,” J. Nucl. Mater. 280, 345–352 (2000).

    Article  CAS  Google Scholar 

  11. M. S. Stal’tsov, I. I. Chernov, B. A. Kalin, A. A. Belyaev, A. V. Gordeev, V. M. Shestakova, A. A. Bolat-ool, T. V. Kuznetsova, and V. V. Lebedev, “Gas porosity along the path of ions in vanadium and its alloys under sequential irradiation with helium and hydrogen ions,” Proceedings of the XXVIII International Conference “Radiation Physics of Solid State ", July 9–14, 2018, Sevastopol’ (FGBNU NII PMT, Moscow, 2018), pp. 40–49.

  12. J. P. Biersack and L. G. Haggmark, “A Monte Carlo computer program for the transport of energetic ions in amorphous targets,” Nucl. Instrum. Methods 174, 257–269 (1980).

    Article  CAS  Google Scholar 

  13. N. V. Gavrilov, G. A. Mesyats, S. P. Nikulin, G. V. Radkovskii, A. Eklind, A. J. Perry, and J. R. Treglio, “A new broad beam gas ion source for industrial applications,” J. Vac. Sci. Technol., A 14, 1050–1055 (1996).

    Article  CAS  Google Scholar 

  14. M. J. Norgett, M. T. Robinson, and I. M. Tjrrens, “Proposed method of calculating displacement dose rates,” Nucl. Eng. Des. 33, 50–54 (1975).

    Article  Google Scholar 

  15. H. M. Rietveld, “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2, No. 2, 65–71 (1969).

    Article  CAS  Google Scholar 

  16. W. H. Hall, “X-Ray line broadening in metals,” Proc. Phys. Soc., Sect. A 62, No. 11, 741–743 (1949).

    Google Scholar 

  17. W. H. Hall and G. K. Williamson, “The diffraction pattern of cold worked metals: I the nature of extinction,” Proc. Phys. Soc., Sect. B 64, No. 11, 937–946 (1951).

    Google Scholar 

  18. G. K. Williamson and W. H. Hall, “X-ray line broadening from filed aluminium and wolfram. L’elargissement des raies de rayons x obtenues des limailles d’aluminium et de tungsten. Die verbreiterung der roentgeninterferenzlinien von aluminium- und wolframspaenen,” Acta Metall. 1, No. 1, 22–31 (1953).

    Article  CAS  Google Scholar 

  19. V. I. Voronin, E. Z. Valiev, I. F. Berger, B. N. Goschitskii, N. V. Proskurnina, V. V. Sagaradze, and N. V. Kataeva, “Neutron diffraction analysis of Cr–Ni–Mo–Ti austenitic steel after cold plastic deformation and fast neutrons irradiation,” J. Nucl. Mater. 459, 97–102 (2015).

  20. V. I. Voronin, I. F. Berger, N. V. Proskurnina, and B. N. Goshchitskii, “Neutron diffraction study of structure and phase composition of fuel claddings made of cold-deformed steel ChS68 after normal operation in BN-600 reactor,” J. Nucl. Mater. 509, 218–224 (2018).

    Article  CAS  Google Scholar 

  21. V. I. Voronin, N. V. Proskurnina, B. N. Goshchitskii, and I. F. Berger, “Defects in a lattice of pure nickel subjected to fast-neutron irradiation followed by annealings: Neutron-diffraction examination,” Phys. Met. Metallogr. 117, No. 4, 348–354 (2016).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The electron microscopic studies were performed at the Center of the Collaborative Test Center of Nanotechnologies and Advanced Materials, Institute of Metal Physics, Ural Branch, Russian Academy of Sciences.

Funding

This work was supported by the Russian Scientific Foundation (project no. 19-79-20173).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Gushchina.

Additional information

Translated by T. Gapontseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gushchina, N.V., Makhin’ko, F.F., Ovchinnikov, V.V. et al. Effect of Medium-Energy Ar+ Ion Irradiation on the Structure of Austenitic Chromium–Nickel Steel. Phys. Metals Metallogr. 122, 307–313 (2021). https://doi.org/10.1134/S0031918X21030078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X21030078

Keywords:

Navigation