Skip to main content
Log in

Statistical estimates of the contribution of multiply scattered radiation to the intensity of acoustic radiation transmitted through a lower 500-m atmospheric layer

  • Published:
Russian Physics Journal Aims and scope

Abstract

The problem of acoustic radiation propagation through a lower 500-m plane-stratified turbulent atmospheric layer has been solved by the Monte Carlo method. Statistical estimates of the contribution of multiply scattered radiation to the transmitted acoustic radiation intensity are obtained. A point omnidirectional source of monochromatic acoustic radiation was placed at a height of 35 m above the absorbing Earth’s surface. Statistical estimates of the contribution of multiply scattered radiation to the transmitted radiation intensity have shown that it does not exceed 15% for the outer scale of atmospheric turbulence L0 = 10 m and sound frequency F = 1700 Hz, reaches 30% for L0 = 20 m, and increases to 90% for L0 = 80 m. A comparison of the calculated results with the available experimental data demonstrates their satisfactory agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. E. Ostashev, Sound Propagation in Moving Media [in Russian], Nauka, Moscow (1992).

    Google Scholar 

  2. R. A. Baikalova, G. M. Krekov, and L. G. Shamanaeva, Opt. Atmos., 1, No.5, 25–30 (1988).

    Google Scholar 

  3. V. I. Tatarskii, Wave Propagation in a Turbulent Medium, McGraw-Hill, New York (1961).

    Google Scholar 

  4. W. D. Neff, Quantitative Evaluation of Acoustic Echoes from the Planetary Boundary Layer, NOAA Technical Report ERL322-WPL, Boulder (1975).

  5. V. S. Komarov, Statistical Structure of the Humidity Field in the Free Atmosphere over the Territory of the USSR [in Russian], Gidrometeoizdat, Leningrad (1971).

    Google Scholar 

  6. L. G. Shamanaeva, J. Acoust. Soc. Am., 73, No.3, 780–784 (1983).

    Google Scholar 

  7. R. A. Baikalova, G. M. Krekov, and L. G. Shamanaeva, J. Acoust. Soc. Am., 84, No.4, 1332–1335 (1988).

    PubMed  Google Scholar 

  8. Yu. A. Glagolev, Handbook of the Atmospheric Physical Parameters [in Russian], Gidrometeoizdat, Leningrad (1970).

    Google Scholar 

  9. N. P. Krasnenko and L. G. Shamanaeva, Meteorol. Z., No. 7, 392–397 (1998).

  10. L. G. Shamanaeva, Proc. SPIE, 4341, 316–322 (2000).

    Article  Google Scholar 

  11. B. Baerg and W. H. Schwarz, J. Acoust. Soc. Am., 39, 1125–1132 (1966).

    Google Scholar 

  12. M. A. Kallistratova, Trudy Inst. Fiz. Atmos., 4, 203–256 (1962).

    Google Scholar 

  13. G. I. Marchuk, G. A. Mikhailov, M. A. Nazaraliev, et al., Monte Carlo Method in Atmospheric Optics [in Russian], Nauka, Novosibirsk (1976).

    Google Scholar 

  14. G. M. Krekov, V. Ya. S’edin, and L. G. Shamanaeva, in: Abstracts of Reports at the 8th All-Union Symp. Laser and Acoustic Sounding of the Atmosphere [in Russian], Tomsk (1984), pp. 176–181.

  15. G. M. Krekov and L. G. Shamanaeva, in: Atmospheric Optics [in Russian], Nauka, Moscow (1974), pp. 180–186.

    Google Scholar 

  16. M. Aubry, F. Baudin, A. WeIll, and C. Rainteau, J. Geophys. Res., 79, No.36, 5598–5606 (1974).

    Google Scholar 

  17. L. G. Shamanaeva and Yu. B. Burkatovskaya, in: Proc. 12th Int. Symp. Acoustic Remote Sensing and Associated Techniques of the Atmosphere and Oceans, Cambridge (2004), pp. 87–90.

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 12, pp. 72–79, December, 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shamanaeva, L.G., Burkatovskaya, Y.B. Statistical estimates of the contribution of multiply scattered radiation to the intensity of acoustic radiation transmitted through a lower 500-m atmospheric layer. Russ Phys J 47, 1297–1306 (2004). https://doi.org/10.1007/s11182-005-0070-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-005-0070-9

Keywords

Navigation