Skip to main content
Log in

The use of generalized magnetic parameters for magnetic structural analysis and nondestructive testing

  • Magnetic and Eddy Current Methods
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

The results of studies regarding the dependence of the product of the coercive force and the initial magnetic susceptibility of a nickel single crystal with an intermediate orientation on the shear stress are analyzed. It is concluded that an increase in the aforementioned product \(\chi _{in} H_c \) for a nickel single crystal upon cold plastic deformation is due to refining of magnetic domains that is caused by formation of cells and subgrains within the single crystal. The tentative size of magnetic domains was determined based on the value of generalized magnetic parameter \({{\left( {\chi _{in} H_c } \right)} \mathord{\left/ {\vphantom {{\left( {\chi _{in} H_c } \right)} M}} \right. \kern-\nulldelimiterspace} M}_s \). The variations in the \({\chi _{in} H_c }\) product and in the calculated dimensions of magnetic domains in polycrystalline nickel are analyzed using data reported by Kersten-Gottschalt. It was also shown that, the density of dislocations being constant, the generalized magnetic parameter \({{M_{Hr} } \mathord{\left/ {\vphantom {{M_{Hr} } {\left( {\chi _{in} H_c } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {\chi _{in} H_c } \right)}}\) is sensitive to changes in the sizes of nonferromagnetic inclusions, whereas in the case of small nonferromagnetic inclusions, an increase in the generalized parameter is due to an increase in the density of dislocations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Bida, G.V., Issledovanie strukturnoi chuvstvitel’nosti relaksatsionnykh magnitnykh svoistv ferromagnetikov (Investigation of the Structure Sensitivity of Relaxation Magnetic Properties of Ferromagnetics), Available from VINITI, 1990, Moscow, no. 3717.

  2. Bida, G.V., Tsar’kova, T.P., and Sazhina, E.Yu., Magnetic Properties Related to Reversible Processes upon Magnetization and Remagnetization in the the Bending Domain Wall Model, Fiz. Met. Metalloved., 1992, no. 1, pp. 31–35.

  3. G.V. Bida E.S. Gorkunov V.M. Shevnin (2002) Magnitnyi kontrol’ mekhanicheskikh svoistv prokata Ural Division, Russ. Acad. of Sci. Yekaterinburg

    Google Scholar 

  4. D. Kulman-Wilsdorf (1968) Dislocations R. W. Kahn (Eds) Fizicheskoe metallovedenie, tom 3 Mir Moscow 9–86

    Google Scholar 

  5. Ch. Kittel (1951) Physical Theory of Ferromagnetic Domains with Spontaneous Magnetization S. V. Vonsovskii (Eds) Fizika magnitnykh oblastei Izd. Inostrannoi Literatury Moscow 20–116

    Google Scholar 

  6. Kersten, M. and Gottchalt, P., Einige Versuche Über den Einfluss von Eigenspannungen auf Koerzitivkraft und kritische Feldstärke der Barkhausensprönge, Zs. f. techn. Phys., 1940, no. 12, pp. 345–352.

  7. M. Kersten (1943) Gründlagen einer Theorie der Ferromagnetishen Hysterese und der Koerzitivkraft Verlag Hirzel Leipzig

    Google Scholar 

  8. Kersten, M., Zur Theorie der ferromagnetischen Hysterese und Anfangspermeablität, Phys. Zs., 1943, nos. 3/4, pp. 63–67.

  9. M. Kersten (1956) ArticleTitleÜber die Bedeutung der Versetzungsdichte für die Theorie der Koerzitivkraft rekristallisierter Werk-stoffe Zs. f. angev. Phys. 8 IssueID10 497–502

    Google Scholar 

  10. Kondorskii, E.I., On the Origin of the Coercive Force and Irreversible Changes upon Magnetization, Zh. Eksp. Teor. Fiz., 1937, no. 9–1, pp. 1117–1131.

  11. Kondorskii, E.I., About the Hysteresis of Ferromagnetics, Zh. Eksp. Teor. Fiz., 1940, no. 10, pp. 420–440.

  12. E.I. Kondorskii (1948) ArticleTitleOn the Theory of Coercive Force of Steels Dokl. Akad. Nauk SSSR 63 IssueID6 507–510

    Google Scholar 

  13. E. I. Kondorskii (1949) ArticleTitleOn the Theory of Coercive Force of Mild Steels Dokl. Akad. Nauk SSSR 63 IssueID1 37–40

    Google Scholar 

  14. E.I. Kondorskii (1951) ArticleTitleOn the Theory of Coercive Force and Magnetic Susceptibility of Ferromagnetic Powders Depending on the Space Filling Dokl. Akad. Nauk SSSR 80 IssueID2 197–200

    Google Scholar 

  15. E.I. Kondorskii (1952) ArticleTitleOrigin of the High Coercivity of Fine-Grained Ferromagnetics in the Domain Structure Theory Izv. Akad. Nauk SSSR, ser. Fiz. 16 IssueID4 398–411

    Google Scholar 

  16. Neel, L., Effect des cavites et des inclusions sur le champ coercitif, Cahiers de Physique, 1944, no. 25, pp. 21–44. Translated in Fizika magnitnykh oblastei, Vonsovskii, S.V., Ed., Moscow: Izd. Inostrannoi Literatury, 1951, pp.215–239.

  17. L. Neel (1947) ArticleTitleBases d’une nouvele theorie generale du champ coefcitif Ann. Univ. Grenoble 22 299–343

    Google Scholar 

  18. L. Neel (1947) ArticleTitleMagnetisme, le camp coercitif d’une roudre ferromagnetique cubique a grain anisotropies Comptes Rendus 224 1550–1560

    Google Scholar 

  19. L. Neel (1949) ArticleTitleNouvelle theorie du champ coercitif Physica 15 IssueID1–2 225–234

    Google Scholar 

  20. E. Schwabe (1952) ArticleTitleTheoretische Betrachtungen über die Beeinflüssung der ferromagnetischen Koerzitivkraft durch Einfküsse mit rotationseliptischer Form, für den Fall, das deren Abmessungen klein gegen die Decke der Blochwand sind Ann. d. Phys. 11 IssueID6 99–112

    Google Scholar 

  21. R. Brenner (1955) ArticleTitleErgebnisse und Probleme der quantitativen Theorie der Koerzitivkraft Zs. angev. Phys. 8 IssueID10 499–507

    Google Scholar 

  22. R. Fridberg D.I. Paul (1975) ArticleTitleNew Theory of Coercive Force of Ferromagnetic Materials Phys. Rev. Lett. 34 IssueID19 1234–1237

    Google Scholar 

  23. D.I. Paul (1982) ArticleTitleGeneral Theory of the Coercive Force due to Domain Wall Pinning J. Appl. Phys. 53 IssueID3 1649–1654

    Google Scholar 

  24. W. Prause (1979) ArticleTitleEnergy and Coercive Field of a Porous Ferromagnetic Sample with Blochwalle and Self-consistent Magnetization Magn. and Magn. Mater. 13 IssueID1–2 236–238

    Google Scholar 

  25. H. Kronmüller (1981) ArticleTitleTheory of the Coercive Field in Amorphous Ferromagnetic Alloys Magn. and Magn. Mater. 24 IssueID2 159–167

    Google Scholar 

  26. D. Siemers E. Nembach (1979) ArticleTitleHardening of Ferromagnets by Non-Magnetic Inclusions Acta Metall. 27 IssueID2 321–334

    Google Scholar 

  27. H. Träuble (1996) Magnetisirungskurve und magnetische Hysterese ferromagnetischer Einkristalle A. Seeger (Eds) Modern Probleme der Metallphysik Springer Berlin-Heidelberg-New York 157–475

    Google Scholar 

  28. J. Goodenough (1959) The Theory of Appearance of Spontaneous Magnetization Regions and Coercive Force in Poly-crystalline Ferromagnetics Magnitnaya Struktura Ferromagnetikov Izd. Inostr. Lit. Moscow 19–57

    Google Scholar 

  29. L.I. Dijkstra S. Wert (1950) ArticleTitleEffet of Inclusion of Coerzitive Force of Iron Phys. Rev. 79 IssueID6 979–985

    Google Scholar 

  30. Vitsena, F., On the Relationship between the Coercive Force of Ferromagnets and Internal Stresses, Czech. J. Phys., 1954, no. 4, pp. 419–438.

  31. Vitsena, F., Effect of Dislocations on the Coercive Force of Ferromagnets, Czech. J. Phys., 1955, no. 4, pp. 480–501.

  32. Z. Malek (1957) ArticleTitleDie Abhangigkeit der Koerzitivkraft von der plastischen Deformation Czech. J. Phys. 7 IssueID2 152–168

    Google Scholar 

  33. Malek, Z., A Study of the Influence of Dislocations on Some of the Magnetic Properties of Permalloy Alloy, Czech. J. Phys., 1959, no. 9, pp. 613–626.

  34. Kroupa F. and Malek, Z., Der Einfluss der plastichnen Verformuung durch Kaltwalzen auf die Koerzitivkraft, Czech. J. Phys., 1959, no. 9, pp. 627–637.

  35. D. Siemers E. Nembach (1979) ArticleTitleHardening of Ferromagnets by Non-Magnetic Inclusions Acta Metall. 27 IssueID2 321–234

    Google Scholar 

  36. Ivanov, S.V., Kurkin, M.I., and Nikolaev, V.V., On the Theory of the Coercive Froce in Ferromagnets, Fiz. Met. Metallogr., 1990, no 9, pp. 53–57.

  37. Nikolaev, V.V., Kurkin, M.I. and Ivanov, S.V., Specific Features of the Cleavage of Domain Walls from Nonmagnetic hInclusions in Ferromagnets: the Axisymmetric Model, Fiz. Met. Metalloved., 1991, no. 9, pp. 39–43.

  38. K.-H. Pfeffer (1967) ArticleTitleMikromagnetische Behandlung zwischen Versttzungen und Blochwanden Phys. Status Solidi 20 IssueID1 395–411

    Google Scholar 

  39. K.-H. Pfeffer (1967) ArticleTitleMikromagnetische Behandlung zwischen Versttzungen und Blochwanden Phys. Status Solidi 21 IssueID2 837–856

    Google Scholar 

  40. K.-H. Pfeffer (1967) ArticleTitleZur Theorie der Koerzitivfeldstarke und Anfangssuszeptiblität Phys. Status Solidi 21 IssueID2 857–872

    Google Scholar 

  41. Bida, G.V., Nichipuruk, A.P., and Tsar’kova, T.P., Magnetic Properties of Steels after Quenching and Tempering. I. General. Carbon Steels, Defektkoskopiya, 2001, no. 2, pp. 3–25 [Rus. J. of Nondestructive Testing (Engl. Transl.), 2001, vol. 37, no. 2, p. 79]

  42. Bida, G.V., Nichipuruk, A.P., and Tsar’kova, T.P., Magnetic Properties of Steels after Quenching and Tempering. II. Low-Alloyed Steels, Defektkoskopiya, 2001, no. 2, pp. 26–42 [Rus. J. of Nondestructive Testing (Engl. Transl.), 2001, vol. 37, no. 2, p. 100]

  43. Bida, G.V., Nichipuruk, A.P., and Tsar’kova, T.P., Magnetic Properties of Steels after Quenching and Tempering. III. High-Chromium Steels, Defektkoskopiya, 2001, no. 2, pp. 43–56 [Rus. J. of Nondestructive Testing (Engl. Transl.), 2001, vol. 37, no. 2, p. 116]

  44. Bida, G.V., Tartachnaya, M.V., and Sazhina, E.Yu., Issledovanie vliyaniya kholodnoi plasticheskoi deformatsii na relaksatsionnye magnitnye svoistva ferromagnetikov (Study of the Effect of Cold Plastic Deformation on Relaxation Magnetic Properties of Ferromagnets), Available from VINITI, 1993, Moscow, no. 292–93.

  45. Tsar’kova, T.P., Bida, G.V., Mikheev, M.N., and Gorkunov, E.S., Magnetic Method for Testing the Quality of High-Temperature Tempering of Tool and Low-Alloyed Steels, Defektoskopiya, 1981, no. 3, pp.14–17.

  46. Bida, G.V., Tsar’kova, T.P., Kostin, V.N., and Sazhina, E.Yu., The Use of Relaxation Magnetic Properties for Non-destructive Testing of Quenched and Tempered Steels, Defektoskopiya, 1991, no. 12, pp. 39–44.

  47. Bida, G.V., Magnetic Properties of a Body as Parameters for Nondestructive Testing of the Tempering Quality of Quenched Steels (a Review), Defektoskopiya, 2002, no. 6, pp. 19–33 [Rus. J. of Nondestructive Testing (Engl. Transl.), 2002, vol. 38, no. 6, p. 412].

  48. Bida, G.V., Pochuev, N.D., and Stashkov, A.N., Nondestructive Testing of the Stress-Strain Properties of Oil Pipes, Defektoskopiya, 2002, no. 10, pp. 14–29 [Rus. J. of Nondestructive Testing (Engl. Transl.), 2002, vol. 38, no. 10, p. 725].

  49. Bida, G.V., Kamardin, V.M., and Tartachnaya, M.V., Investigation of the Possibility of Nondestructive Magnetic Testing of Mechanical Properties of Thermostrengthened Rails, Tekh. Diagnostika i Nerazrushayushchii Kontrol’, 1993, no. 4, pp. 42–48.

  50. Bida, G.V., and Stashkov, A.N., Multipurpose Use of Magnetic Properties of Steels in Nondestructive Testing of the Quality of Heat-Treated Workpieces, Defektoskopiya, 2003, no. 4, pp. 67–74 [Rus. J. of Nondestructive Testing (Engl. Transl.), 2003, vol. 39, no. 4, p. 310].

  51. Bida, G.V., Tsar’kova, T.P., and Sazhina, E.Yu., The Influence of Structure Changes during Quenching and Tempering on Relaxation Magnetization and Magnetic Susceptibility of High-Carbon and Low-Alloyed Steels, Defektoskopiya, 1995, no. 2 pp. 72–81.

  52. Bida, G.V., Gorkunov, E.S., Vil’danova, N.F, and Tsar’kova, T.P., The Influence of Nonmetallic Inclusions on the Relaxation Magnetic Properties of Ferromagnets, Defektoskopiya, 1999, no. 2, pp. 18–30.

  53. V. K. Arkad’ev (1934) Elektromagnitnye processy v metallakh. Chast’ I. Postoyannoe elektricheskoe i magnitnoe pole ONTI Moscow, Leningrad

    Google Scholar 

  54. Tsar’kova, T.P., Bida, G.V., and Kostin, V.N., Izmerenie relaksatsionnoi koertsitivnoi sily i relaksatsionnoi magnitnoi induktsii na obraztsakh razomknutoi formy (Measurements of the Relaxation Coercive Force and Relaxation Induction on Open-Shaped Specimens), Available from VINITI, 1987, Moscow, no. 7483–87.

  55. S.V. Vonsovskii Ya.S. Shur (1948) Ferromagnetizm OGIZ GITTL Moscow-Leningrad

    Google Scholar 

  56. G. Treuble A. Zeeger (1969) Vliyanie defektov kristallicheskoi reshetki na protsessy namagnichivaniya v ferromag-nitnykh monokristallakh Mir Moscow 201–264

    Google Scholar 

  57. G.E.R. Schulze (1967) Metallphysik Akademie Berlin

    Google Scholar 

  58. Seeger, A., Kronmüller, H., Mader, S., and Träuble, H., Work-hardening of Hexagonal Close-packed Crystals and in Easy Glide Region of Face-centered Cubic Crystals, Philos. Mag., 1961, pp. 639–654.

  59. J. Virtman J.R. Virtman (1968) Mechanical Properties Inessentially Depending on Temperature R. Kahn (Eds) Fizicheskoe Metallovedenie Mir Moscow 149–215

    Google Scholar 

  60. V.N. Gridnev V.K. Gavrilyuk Yu.Ya. Meshkov (1974) Prochnost’ i plastichnost’ kholodnodeformirovannoi stali Naukova Dumka Kiev

    Google Scholar 

  61. V.V. Rybin (1986) Bol’shie plasticheskie deformatsii i razrushenie metallov Metallurgiya Moscow

    Google Scholar 

  62. A.H. Qureshi (1961) ArticleTitleExperimentelle Untersuchungen über magnetische Eigenschaften und die Ausscheidungkinetik vor Eisen-Kupper-Legirunger Zs. f. Metallkunde 52 IssueID12 799–814

    Google Scholar 

  63. G.V. Bida (2002) ArticleTitleDifferential Magnetic Method of Nondestructive Testing and Phase Analysis Defektoskopiya 1 26–43

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Defektoskopiya, Vol. 40, No. 7, 2004, pp. 62–76.

Original Russian Text Copyright © 2004 by Bida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bida, G.V. The use of generalized magnetic parameters for magnetic structural analysis and nondestructive testing. Russ J Nondestruct Test 40, 476–486 (2004). https://doi.org/10.1007/s11181-005-0084-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11181-005-0084-y

Keywords

Navigation