Skip to main content
Log in

Base Excision Repair of DNA: Glycosylases

  • Theoretical Papers and Reviews
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The review considers the role of base excision repair in maintaining the constancy of genetic information in the cell. The genetic control and biochemical mechanism are described for the first stage of base excision repair, which is catalyzed by specific enzymes, DNA glycosylases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Fix, D.F. and Glickman, B.W., Differential Enhancement of Spontaneous Transition Mutations in the lacI Gene of an Ung Strain of Escherichia coli, Mutat. Res., 1986, vol. 175, pp. 41–45.

    Google Scholar 

  2. Fix, D.F. and Glickman, B.W., Asymmetric Cytosine Deamination Revealed by Spontaneous Mutation Specificity in an Ung Strain of Escherichia coli, Mol. Cell. Biol., 1987, vol. 209, pp. 78–82.

    Google Scholar 

  3. Mol, C.D., Arvai, A.S., Slupphaug, G., et al., Crystal Structure and Mutational Analysis of Human Uracil-DNA Glycosylase: Structural Basis for Specificity and Catalysis, Cell (Cambridge, Mass.), 1995, vol. 80, pp. 869–878.

    Google Scholar 

  4. Burgers, P.M. and Klein, M.B., Selection by Genetic Transformation of a Saccharomyces cerevisiae Mutant Defective for the Nuclear Uracil-DNA Glycosylase, J. Bacteriol., 1986, vol. 166, pp. 905–913.

    Google Scholar 

  5. Impellizzeri, K.J., Anderson, B., and Burgers, P.M.J., The Spectrum of Spontaneous Mutants in a Saccharomyces cerevisiae Uracil-DNA Glycosylase Mutant Limits the Function of This Enzyme to Cytosine Deamination Repair, J. Bacteriol., 1991, vol. 173, pp. 6807–6810.

    Google Scholar 

  6. Olsen, L.C., Pryme, I.F., and Bassoe, C.F., Molecular Cloning of Human Uracil-DNA Glycosylase, a Highly Conserved DNA Repair Enzyme, EMBO J., 1989, vol. 8, pp. 3121–3125.

    Google Scholar 

  7. Slupphaug, G., Eftedal, I., Kavli, B., et al., Properties of a Recombinant Human Uracil-DNA Glycosylase from the UNG Gene and Evidence That UNG Encodes the Major Uracil-DNA Glycosylase, Biochemistry, 1995, vol. 34, pp. 128–138.

    Google Scholar 

  8. Slupphaug, G., Markussen, F.H., Olsen, L.C., et al., Nuclear and Mitochondrial Forms of Human Uracil-DNA Glycosylase Are Encoded by the Same Gene, Nucleic Acids Res., 1993, vol. 21, pp. 2579–2584.

    Google Scholar 

  9. Savva, R., Nilsen, K.H., Rosewell, I., et al., Ung-Deficient Mice Reveal a Primary Role of the Uracil-DNA Glycosylase Enzyme during DNA Replication, Mol. Cell, 2000, vol. 5, pp. 1059–1065.

    Google Scholar 

  10. Parikh, S.S., Mol, C.D., Slupphaug, G., et al., Base-Excision Repair Initiation Revealed by Crystal Structures and DNA-Binding Kinetics of Human Uracil-DNA Glycosylase Bound to DNA, EMBO J., 1998, vol. 17, pp. 5414–5426.

    Google Scholar 

  11. Boorstein, R.J., Levy, D.D., and Teebor, G.W., 5-Hydroxymethyluracil-DNA Glycosylase Activity May Be a Differentiated Mammalian Function, Mutat. Res., 1987, vol. 183, pp. 257–263.

    Google Scholar 

  12. Haushalter, K.A., Todd, S.M.W., Kirchner, M.W., and Verdine, G.L., Identification of a New Uracil-DNA Glycosylase Family by Expression Cloning Using Synthetic Inhibitors, Curr. Biol., 1999, vol. 9, no.4, pp. 174–185.

    Google Scholar 

  13. Boorstein, R.J., Cummings, A., Jr., Marenstein, D.R., et al., Definitive Identification of Mammalian 5-Hydroxymethyluracil-DNA Glycosylase Activity As SMUG1, J. Biol. Chem., 2001, vol. 276, pp. 41 991–41 997.

    Google Scholar 

  14. Kavli, B., Sundheim, O., Akbari, M., et al., hUNG2 Is the Major Repair Enzyme for Removal of Uracil from U: A Matches, U: G Mismatches, and U in Single-Stranded DNA, with hSMUG As a Broad Specificity Backup, J. Biol. Chem., 2002, vol. 277, pp. 39 926–39 936.

    Google Scholar 

  15. Nilsen, H., Haushalter, K.A., Robins, P., et al., Excision of Deaminated Cytosine from the Vertebrate Genome: Role of the SMUG1 Uracil-DNA Glycosylase, EMBO J., 2001, vol. 20, pp. 4278–4286.

    Google Scholar 

  16. Weibauer, K. and Jiricny, J., Mismatch-Specific Thymine DNA Glycosylase and DNA Polymerase β Mediate the Correction of G: T Mispairs in Nuclear Extracts from Human Cells, Proc. Natl. Acad. Sci. USA, 1990, vol. 87, pp. 5842–5845.

    Google Scholar 

  17. Hendrich, B., Hardeland, U., Ng, H.-H., et al., The Thymine Glycosylase NBD4 Can Bind to the Product of Deamination at Methylated CpG Sites, Nature, 1999, vol. 401, pp. 301–304.

    Google Scholar 

  18. Neddermann, P. and Jiricny, J., The Purification of a Mismatch-Specific Thymine-DNA Glycosylase from HeLa Cells, J. Biol. Chem., 1993, vol. 268, pp. 21 218–21 224.

    Google Scholar 

  19. Zhu, B., Zheng, Y., Angliker, H., et al., 5-Methylcytosine DNA Glycosylase Activity Is Also Present in the Human MBD4 (G: T Mismatch Glycosylase) and in a Related Avian Sequence, Nucleic Acids Res., 2000, vol. 28, pp. 4157–4165.

    Google Scholar 

  20. Neddermann, P. and Jiricny, J., Efficient Removal of Uracil from G: U Mispairs by the Mismatch-Specific Thymine DNA Glycosylase from HeLa Cells, Proc. Natl. Acad. Sci. USA, 1994, vol. 91, pp. 1642–1646.

    Google Scholar 

  21. Petronzelli, F., Riccio, A., Markham, G.D., et al., Biphasic Kinetics of the Human DNA Repair Protein MED1 (MBD4), a Mismatch-Specific DNA N-Glycosylase, J. Biol. Chem., 2000, vol. 275, pp. 32 422–32 429.

    Google Scholar 

  22. Petronzelli, F., Riccio, A., Markham, G.D., et al., Investigation of the Substrate Spectrum of the Human Mismatch-Specific DNA N-Glycosylase MED1 (MBD4): Fundamental Role of the Catalytic Domain, J. Cell Physiol., 2000, vol. 185, pp. 473–480.

    Google Scholar 

  23. Neddermann, P., Gallinari, P., Lettieri, T., et al., Cloning and Expression of Human G: T Mismatch-Specific Thymine-DNA Glycosylase, J. Biol. Chem., 1996, vol. 271, pp. 12 767–12 774.

    Google Scholar 

  24. Shimizu, Y., Iwai, S., and Hanaoka, F., Xeroderma Pigmentosum Group C Protein Interacts Physically and Functionally with Thymine-DNA Glycosylase, EMBO J., 2003, vol. 22, pp. 164–173.

    Google Scholar 

  25. Sung, J.S. and Mosbaugh, D.W., Escherichia coli Double-Strand Uracil-DNA Glycosylase: Involvement in Uracil-Mediated DNA Base Excision Repair and Stimulation of Activity by Endonuclease IV, Biochemistry, 2000, vol. 39, pp. 10 224–10 235.

    Google Scholar 

  26. Sung, J.S., Bennet, S.E., and Mosbaugh, D.W., Fidelity of Uracil-Initiated Base Excision DNA Repair in Escherichia coli Cell Extracts, J. Biol. Chem., 2001, vol. 276, pp. 2276–2285.

    Google Scholar 

  27. Lindahl, T., Instability and Decay of the Primary Structure of DNA, Nature, 1993, vol. 362, pp. 709–715.

    Google Scholar 

  28. Waters, T.R., Gallinari, P., Jiricny, J., and Swann, P.F., Human Thymine DNA Glycosylase Binds to Apurinic Sites in DNA but Is Displaced by Human Apurinic Endonuclease I, J. Biol. Chem., 1999, vol. 274, pp. 67–74.

    Google Scholar 

  29. Lindahl, T., Sedgwick, B., Sekiguchi, M., and Nakabeppu, Y., Regulation and Expression of the Adaptive Response to Alkylating Agents, Annu. Rev. Biochem., 1988, vol. 57, pp. 133–157.

    Google Scholar 

  30. Thomas, L., Yang, C.-H., and Golgthwait, D.A., Two DNA Glycosylases in Escherichia coli Which Release Primarily 3-Methyladenine, Biochem. J., 1982, vol. 21, pp. 1162–1169.

    Google Scholar 

  31. McCarthy, T.V., Karran, P., and Lindahl, T., Inducible Repair of O6-Alkylated DNA Pyrimidines in Escherichia coli, EMBO J., 1984, vol. 3, pp. 545–550.

    Google Scholar 

  32. Terato, H., Masaoka, A., Asagoshi, K., et al., Novel Repair Activities of AlkA (3-Methyladenine DNA Glycosylase II) and Endonuclease VIII for Xanthine and Oxanine, Guanine Lesions Induced by Nitric Oxide and Nitrous Acids, Nucleic Acids Res., 2002, vol. 30, pp. 4975–4984.

    Google Scholar 

  33. Privezentzer, C.V., Saparbaev, M., Sumbandam, A., et al., AlkA Protein Is the Third Escherichia coli DNA Repair Protein Excising a Ring Fragmentation Product of Thymine, Biochemistry, 2000, vol. 39, pp. 14 263–14 268.

    Google Scholar 

  34. Chen, J., Derfler, B., Maskati, A., and Samson, L., Cloning a Eukaryotic DNA-Glycosylase Repair Gene by the Suppression of a DNA Repair Defect in Escherichia coli, Proc. Natl. Acad. Sci. USA, 1989, vol. 86, pp. 7961–7965.

    Google Scholar 

  35. Berdal, K.G., Bjoras, M., Bjelland, S., and Seeberg, E., Cloning and Expression in Escherichia coli of a Gene for an Alkylbase DNA-Glycosylase from Saccharomyces cerevisiae; a Homologue to the Bacterial alkA Gene, EMBO J., 1990, vol. 9, pp. 4563–4568.

    Google Scholar 

  36. Chen, J., Derfler, B., and Samson, L., Saccharomyces cerevisiae 3-Methyladenine DNA Glycosylase Has Homology to the AlkA Glycosylase of E. coli and Is Induced in Response to DNA Alkylation Damage, EMBO J., 1990, vol. 9, pp. 4569–4575.

    Google Scholar 

  37. Liu, Y. and Xiao, W., Bidirectional Regulation of Two DNA Damage-Inducible Genes, MAG1 and DDI1, from Saccharomyces cerevisiae, Mol. Microbiol., 1997, vol. 23, pp. 777–789.

    Google Scholar 

  38. Chakravarti, D., Ibeanu, G.C., Tano, K., and Mitra, S., Cloning and Expression in Escherichia coli of a Human cDNA Encoding the DNA Repair Protein N-Methylpurine-DNA Glycosylase, J. Biol. Chem., 1991, vol. 266, pp. 15 710–15 715.

    Google Scholar 

  39. Bessho, T., Roy, R., Yamamoto, K., et al., Repair of 8-Hydroxyguanine in DNA by Mammalian N-Methylpurine-DNA Glycosylase, Proc. Natl. Acad. Sci. USA, 1993, vol. 90, pp. 8901–8904.

    Google Scholar 

  40. Dosanjh, M.K., Roy, R., Mitra, S., and Singer, B., 1,N6-Ethenoadenine Is Preferred Over 3-Methyladenine As Substrate by a Cloned Human N-Methylpurine-DNA Glycosylase, Biochemistry, 1994, vol. 33, pp. 1624–1628.

    Google Scholar 

  41. Allan, J.M., Engelward, B.P., Dreslin, A., et al., Mammalian 3-Methyladenine-DNA Glycosylase Protects against the Toxicity and Clastogenicity of Certain Chemotherapeutic DNA Cross-Linking Agents, Cancer Res., 1988, vol. 58, pp. 3965–3973.

    Google Scholar 

  42. Engelward, B.P., Dreslin, A., Christensen, J., et al., Repair-Deficient 3-Methyladenine-DNA Glycosylase Homozygous Mutant Mouse Cells Have Increased Sensitivity to Alkylation-Induced Chromosome Damage and Cell Killing, EMBO J., 1996, vol. 15, pp. 945–952.

    Google Scholar 

  43. Matiasivec, Z., Boosalis, M., Mackay, W., et al., Protection against Chloroethylnitrosourea Cytotoxicity by Eukaryotic 3-Methyladenine-DNA Glycosylase, Proc. Natl. Acad. Sci. USA, 1993, vol. 90, pp. 11 855–11 859.

    Google Scholar 

  44. Lee, C.-S., Excision Repair of 2,5-Diaziridinyl-1,4-Benzoquinone (DZQ)-DNA Adduct by Bacterial and Mammalian 3-Methyladenine-DNA Glycosylases, Mol. Cell, 2000, vol. 10, pp. 723–727.

    Google Scholar 

  45. Miao, F., Bouziane, M., Dammann, R., et al., 3-Methyladenine-DNA Glycosylase (MPG Protein) Interacts with Human RAD23 Proteins, J. Biol. Chem., 2000, vol. 275, pp. 28 433–28 438.

    Google Scholar 

  46. Engelward, B.P., Weeda, G., Wyatt, M.D., et al., Base Excision Repair Deficient Mice Lacking the Aag Alkyladenine DNA Glycosylase, Proc. Natl. Acad. Sci. USA, 1997, vol. 94, pp. 13 087–13 092.

    Google Scholar 

  47. Hang, B., Singer, B., Margison, G.P., and Elder, R.H., Targeted Deletion of Alkylpurine-DNA N-Glycosylase in Mice Eliminates Repair of 1,N6-Ethenoadenine and Hypoxanthine but Not of 3,N4-Ethenocytosine or 8-Oxoguanine, Proc. Natl. Acad. Sci. USA, 1997, vol. 94, pp. 12 869–12 874.

    Google Scholar 

  48. Smith, S.A. and Engelward, B.P., In Vivo Repair of Methylation Damage in Aag 3-Methyladenine DNA Glycosylase Null Mouse Cells, Nucleic Acids Res., 2000, vol. 28, pp. 3294–3300.

    Google Scholar 

  49. Lau, A.Y., Scharer, O.D., Samson, L., et al., Crystal Structure of a Human Alkylbase-DNA Repair Enzyme Complexed to DNA: Mechanisms for Nucleotide Flipping and Base Excision, Cell (Cambridge, Mass.), 1998, vol. 95, pp. 249–258.

    Google Scholar 

  50. Korolev, V.G. and Ivanov, E.L., Mutagenic Effect and Mutation Spectrum Induced by 3H Decay in 8th Position of DNA Purine Bases in Saccharomyces cerevisiae, Mutat. Res., 1985, vol. 149, pp. 359–364.

    Google Scholar 

  51. Pavlov, Y.I., Minnik, D.T., Izuta, S., and Kunkel, T.A., DNA Replication Fidelity with 8-Oxodeoxyguanosine Triphosphate, Biochemistry, 1994, vol. 33, pp. 4595–4601.

    Google Scholar 

  52. Michaels, M.L., Pham, L., Gruz, C., and Miller, H., MutM, a Protein that Prevents GC → TA Transversion, Is Formamidopyrimidine-DNA Glycosylase, Nucleic Acids Res., 1991, vol. 19, pp. 3629–3632.

    Google Scholar 

  53. Maki, H. and Sekiguchi, M., MutT Protein Specifically Hydrolyses a Potent Mutagenic Substrate for DNA Synthesis, Nature, 1992, vol. 355, pp. 273–275.

    Google Scholar 

  54. Tajiri, T., MAki, H., and Sekiguchi, M., Functional Cooperation of MutT, MutM, and MutY Proteins in Preventing Mutations Caused by Spontaneous Oxidation of Guanine Nucleotide in Escherichia coli, Mutat. Res., 1995, vol. 336, pp. 257–267.

    Google Scholar 

  55. Cabrera, M., Nghiem, Y., and Miller, J.H., mutM, a Mutator Locus in Escherichia coli that Generates GC → TA Transversions, J. Bacteriol., 1988, vol. 170, pp. 5405–5407.

    Google Scholar 

  56. Tchou, J., Bodepudi, V., Shibutani, S., et al., Substrate Specificity of Fpg Protein: Recognition and Cleavage of Oxidatively Damaged DNA, J. Biol. Chem., 1994, vol. 269, pp. 15 318–15 324.

    Google Scholar 

  57. Zhang, Q.-M., Miyabe, I., Matsumoto, Y., et al., Identification of Repair Enzymes for 5-Formyluracil in DNA: Nth, Nei, and MutM Proteins of Escherichia coli, J. Biol. Chem., 2000, vol. 275, pp. 35 471–35 477.

    Google Scholar 

  58. Fromm, J.C. and Verdine, G.L., DNA Lesion Recognition by the Bacterial Repair Enzyme MutM, J. Biol. Chem., 2003, vol. 278, pp. 51 543–51 548.

    Google Scholar 

  59. Hazra, T.K., Izumi, T., Venkataraman, R., et al., Characterization of a Novel 8-Oxoguanine-DNA Glycosylase Activity in Escherichia coli and Identification of the Enzyme As Endonuclease VIII, J. Biol. Chem., 2000, vol. 275, pp. 27 762–27 767.

    Google Scholar 

  60. Bailly, V. and Verly, W.G., Escherichia coli Endonuclease III Is Not an Endonuclease but a β-Elimination Catalyst, Biochem. J., 1987, vol. 242, pp. 565–572.

    Google Scholar 

  61. McCulough, A.K., Dodson, M.L., and Lloyd, R.S., Initiation of Base Excision Repair: Glycosylase Mechanisms and Structures, Annu. Rev. Biochem., 1999, vol. 68, pp. 255–285.

    Google Scholar 

  62. Matsumoto, Y., Zhang, Q.-M., Takao, M., et al., Escherichia coli Nth and Human hNth1 DNA Glycosylases Are Involved in Removal of 8-Oxoguanine from 8-Oxoguanine/Guanine Mispairs in DNA, Nucleic Acids Res., 2001, vol. 29, pp. 1975–1981.

    Google Scholar 

  63. Nghiem, Y., Cabrera, M., Cupples, C.G., and Miller, J.H., The mutY Gene: A Mutator Locus in Escherichia coli That Generates GC → TA Transversions, Proc. Natl. Acad. Sci. USA, 1988, vol. 85, pp. 2709–2713.

    Google Scholar 

  64. Au, K.G., Cabrera, M., Miller, J.H., and Modrich, P., Escherichia coli mutY Gene Product Is Required for Specific AG → CG Mismatch Correction, Proc. Natl. Acad. Sci. USA, 1988, vol. 85, pp. 9163–9166.

    Google Scholar 

  65. Au, K.G., Clark, S., Miller, J.H., and Modrich, P., Escherichia coli mutY Gene Encodes an Adenine Glycosylase Active on G-A Mispairs, Proc. Natl. Acad. Sci. USA, 1989, vol. 86, pp. 8877–8881.

    Google Scholar 

  66. Michaels, M.L., Tchou, J., Grollman, A.P., and Miller, J.H., A Repair System for 8-Oxo-7,8-Dihydrodeoxyguanine, Biochemistry, 1992, vol. 31, pp. 10 964–10 968.

    Google Scholar 

  67. Manuel, R.C., Czerwinski, E.W., and Lloyd, R.S., Identification of the Structural and Functional Domains of MutY, an Escherichia coli DNA Mismatch Repair Enzyme, J. Biol. Chem., 1996, vol. 271, pp. 16 218–16 226.

    Google Scholar 

  68. Manuel, R.C. and Lloyd, R.S., Cloning, Overexpression, and Biochemical Characterization of the Catalic Domain of MutY, Biochemistry, 1997, vol. 36, pp. 11 140–11 152.

    Google Scholar 

  69. Noll, D.M., Godos, A., Granek, J.A., and Clarke, N.D., The C-Terminal Domain of the Adenine-DNA Glycosylase MutY Confers Specificity for 8-Oxoguanine/Adenine Mispairs and May Have Evolved from MutT, an 8-Oxo-dGTPase, Biochemistry, 1999, vol. 38, pp. 6374–6379.

    Google Scholar 

  70. Lu, A.-L., Tsai-Wu, J.-J., and Cillo, J., DNA Determinants and Substrate Specificities of Escherichia coli MutY, J. Biol. Chem., 1995, vol. 270, pp. 23 582–23 586.

    Google Scholar 

  71. Li, X. and Lu, A.L., Intact MutY and Its Catalytic Domain Differentially Contact with A: 8-OxoG-Containing DNA, Nucleic Acids Res., 2000, vol. 28, pp. 4593–4603.

    Google Scholar 

  72. Fromme, J.C., Banerjee, A., Huang, S.J., and Verdline, G.L., Structural Basis for Removal of Adenine Mispaired with 8-Oxoguanine by MutY Adenine DNA Glycosylase, Nature, 2004, vol. 427, pp. 652–656.

    Google Scholar 

  73. Karahalil, B., Girard, P.M., Boiteux, S., and Dizdaroglu, M., Substrate Specificity of the Ogg1 Protein of Saccharomyces cerevisiae: Excision of Guanine Lesions Produced in DNA by Ionizing Radiation-or Hydrogen Peroxide/Metal Ion-Generated Free Radicals, Nucleic Acids Res., 1998, vol. 26, pp. 1228–1233.

    Google Scholar 

  74. Van der Kemp, P.A., Thomas, D., Barbey, R., et al., Cloning and Expression in Escherichia coli of the OGG1 Gene of Saccharomyces cerevisiae, which Codes for a DNA Glycosylase That Excises 7,8-Dihydro-8-Oxoguanine and 2,6-Diamino-4-Hydroxy-5-Methylformamidopyrimidine, Proc. Natl. Acad. Sci. USA, 1996, vol. 93, pp. 5197–5202.

    Google Scholar 

  75. Nash, H.M., Bruner, S.D., Scharer, O.D., et al., Cloning of a Yeast 8-Oxoguanine DNA Glycosylase Reveals the Existence of a Base-Excision DNA-Repair Protein Superfamily, Curr. Biol., 1996, vol. 6, pp. 968–980.

    Google Scholar 

  76. Thomas, D., Scot, A.D., Barbey, R., et al., Inactivation of OGG1 Increases the Incidence of GC → TA Transitions in Saccharomyces cerevisiae: Evidence for Endogenous Oxidative Damage to DNA in Eukaryotic Cells, Mol. Gen. Genet., 1997, vol. 254, pp. 171–178.

    Google Scholar 

  77. Girard, P.M., Guibourt, N., and Boiteux, S., The Ogg1 Protein of Saccharomyces cerevisiae: A 7,8-Dihydro-8-Oxoguanine DNA Glycosylase/AP Lyase Whose Lysine 241 Is a Critical Residue for Catalytic Activity, Nucleic Acids Res., 1997, vol. 25, pp. 3204–3211.

    Google Scholar 

  78. Sandigursky, M., Yacoub, A., Kelley, M.R., et al., The Yeast 8-Oxoguanine DNA Glycosylase (Ogg1) Contains a DNA Deoxyribophosphodiesterase (dRpase) Activity, Nucleic Acids Res., 1997, vol. 25, pp. 4557–4561.

    Google Scholar 

  79. Eide, L., Bjoras, M., Pirovano, M., et al., Base Excision of Oxidative Purine and Pyrimidine DNA Damage in Saccharomyces cerevisiae by a DNA Glycosylase with Sequence Similarity to Endonuclease III from Escherichia coli, Proc. Natl. Acad. Sci. USA, 1996, vol. 93, pp. 10 735–10 740.

    Google Scholar 

  80. Alseth, I., Eide, L., Pirovano, M., et al., The Saccharomyces cerevisiae Homologues of Endonuclease III from Escherichia coli, Ntg1 and Ntg2, Are Both Required for Efficient Repair of Spontaneous and Induced Oxidative DNA Damage in Yeast, Mol. Cell. Biol., 1999, vol. 19, pp. 3779–3787.

    Google Scholar 

  81. Swanson, R.L., Morey, N.J., Doetsch, P.W., and Jinks-Robertson, S., Overlapping Specificities of Base Excision Repair, Nucleotide Excision Repair, Recombination, and Translesion Synthesis Pathways for DNA Base Damage in Saccharomyces cerevisiae, Mol. Cell. Biol., 1999, vol. 19, pp. 2929–2935.

    Google Scholar 

  82. You, H.J., Swanson, R.L., and Doetsch, P.W., Saccharomyces cerevisiae Possesses Two Functional Homologs of Escherichia coli Endonuclease III, Biochemistry, 1998, vol. 37, pp. 6033–6040.

    Google Scholar 

  83. Senturker, S., van der Kemp, P.A., You, H.J., et al., Substrate Specificities of the Ntg1 and Ntg2 Proteins of Saccharomyces cerevisiae for Oxidized DNA Bases Are Not Identical, Nucleic Acids Res., 1998, vol. 26, pp. 5270–5276.

    Google Scholar 

  84. Earley, M.C. and Crouse, G.F., The Role of Mismatch Repair in the Prevention of Base Pair Mutations in Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 15 487–15 491.

    Google Scholar 

  85. Marsischky, G.T. and Kolodner, R.D., Biochemical Characterization of the Interaction between the Saccharomyces cerevisiae MSH2-MSH6 Complex and Mispaired Bases in DNA, J. Biol. Chem., 1999, vol. 274, pp. 26 668–26 682.

    Google Scholar 

  86. Radicella, J.P., Dherin, C., Desmaze, C., et al., Cloning and Characterization of hOGG1, a Human Homolog of the OGG1 Gene of Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. USA, 1997, vol. 94, pp. 8010–8015.

    Google Scholar 

  87. Roldan-Arjona, T., Wei, Y.-F., Carter, K.C., et al., Molecular Cloning and Functional Expression of a Human cDNA Encoding the Antimutator Enzyme 8-Hydroxyguanine-DNA Glycosylase, Proc. Natl. Acad. Sci. USA, 1997, vol. 94, pp. 8016–8020.

    Google Scholar 

  88. Rosenquist, T.A., Zharkov, D., and Grollman, A.P., Cloning and Characterization of a Mammalian 8-Oxoguanine DNA Glycosylase, Proc. Natl. Acad. Sci. USA, 1997, vol. 94, pp. 7429–7434.

    Google Scholar 

  89. Klungland, A., Rosewell, I., Hollenbach, S., et al., Accumulation of Premutagenic DNA Lesions in Mice Defective in Removal of Oxidative Base Damage, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 13 300–13 305.

    Google Scholar 

  90. Minowa, O., Arai, T., Hirano, M., et al., Mmh/Ogg1 Gene Inactivation Results in Accumulation of 8-Hydroxyguanine in Mice, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 4156–4161.

    Google Scholar 

  91. Nishioka, K., Ohtsubo, T., Oda, H., et al., Expression and Differential Intracellular Localization of Two Major Forms of Human 8-Oxoguanine DNA Glycosylase Encoded by Alternatively Spliced OGG1 mRNAs, Mol. Biol. Cell, 1999, vol. 10, pp. 1637–1652.

    Google Scholar 

  92. Asagoshi, K., Yamada, T., Terato, H., et al., Distinct Repair Activities of Human 7,8-Dihydro-8-Oxoguanine DNA Glycosylase and Formamidopyrimidine DNA Glycosylase for Formamidopyrimidine and 7,8-Dihydro-8-Oxoguanine, J. Biol. Chem., 2000, vol. 275, pp. 4956–4964.

    Google Scholar 

  93. Van der Kemp, P.A., Charbonnier, J.-B., Audeberg, M., and Boiteux, S., Catalytic and DNA-Binding Properties of the Human Ogg1 DNA N-Glycosylase/Lyase: Biochemical Exploration of H270, Q315, and F319, Three Amino Acids of the 8-Oxoguanine-Binding Pocket, Nucleic Acids Res., 2004, vol. 32, pp. 570–578.

    Google Scholar 

  94. Le Page, F., Klungland, A., Barnes, D.E., et al., Transcription Coupled Repair of 8-Oxoguanine in Murine Cells: The Ogg1 Protein Is Required for Repair in Non-transcribed Sequences but Not in Transcribed Sequences, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 8397–8402.

    Google Scholar 

  95. Hazra, T.K., Izumi, T., Maidt, L., et al., The Presence of Two Distinct 8-Oxoguanine Repair Enzymes in Human Cells: Their Potential Complementary Roles in Preventing Mutation, Nucleic Acids Res., 1998, vol. 26, pp. 5116–5122.

    Google Scholar 

  96. Aspinwall, R., Rothwell, D.G., Roldan-Arjona, T., et al., Cloning and Characterization of a Functional Human Homolog of Escherichia coli Endonuclease III, Proc. Natl. Acad. Sci. USA, 1997, vol. 94, pp. 109–114.

    Google Scholar 

  97. Hilbert, T.P., Chaung, W., Bootstein, R.J., et al., Cloning and Expression of the cDNA Encoding the Human Homologue of the DNA Repair Enzyme, Escherichia coli Endonuclease III, J. Biol. Chem., 1997, vol. 272, pp. 6733–6740.

    Google Scholar 

  98. Hazra, T.K., Kow, Y.W., Hatahet, Z., et al., Identification and Characterization of a Novel Human DNA Glycosylase for Repair of Cytosine-Derived Lesions, J. Biol. Chem., 2002, vol. 277, pp. 30 417–30 420.

    Google Scholar 

  99. Morland, I., Rolseth, V., Luna, L., et al., Human DNA Glycosylases of the Bacterial Fpg/MutM Superfamily: An Alternative Pathway for the Repair of 8-Oxoguanine and Other Oxidation Products in DNA, Nucleic Acids Res., 2002, vol. 30, pp. 4926–4936.

    Google Scholar 

  100. Ocampo, M.T.A., Chaung, W., Marenstein, D.R., et al., Targeted Deletion of mNth1 Reveals a Novel DNA Repair Enzyme Activity, Mol. Cell. Biol., 2002, vol. 22, pp. 6111–6121.

    Google Scholar 

  101. Elder, R.H. and Dianov, G.L., Repair of Dihydrouracil by Base Excision Repair in mNTH1 Knock-Out Cell Extracts, J. Biol. Chem., 2002, vol. 277, pp. 50 487–50 490.

    Google Scholar 

  102. Luna, L., Bjoras, M., Hoff, E., et al., Cell-Cycle Regulation, Intracellular Sorting and Induced Overexpression of the Human NTH1 DNA Glycosylase Involved in Removal of Formamidopyrimidine Residues from DNA, Mutat. Res., 2000, vol. 460, pp. 95–104.

    Google Scholar 

  103. Hazra, T.K., Izumi, T., Boldogh, I., et al., Identification and Characterization of a Human DNA Glycosylase for Repair of Modified Bases in Oxidatively Damaged DNA, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, pp. 3523–3528.

    Google Scholar 

  104. Miller, H., Fernandes, A.S., Zaika, E., et al., Stereoselective Excision of Thymine Glycol from Oxidatively Damaged DNA, Nucleic Acids Res., 2004, vol. 32, pp. 338–345.

    Google Scholar 

  105. Slupska, M.M., Baikalov, C., Luther, W.M., et al., Cloning and Sequencing a Human Homolog (hMYH) of the Escherichia coli mutY Gene Whose Function Is Required for the Repair of Oxidative Damage, J. Bacteriol., 1996, vol. 178, pp. 3885–3892.

    Google Scholar 

  106. Parker, A., O’Meally, R.N., Sahin, F., et al., Defective Human MutY Phosphorylation Exists in Colorectal Cancer Cell Lines with Wild-Type MutY Alleles, J. Biol. Chem., 2003, vol. 278, pp. 47 937–47 945.

    Google Scholar 

  107. Hirano, S., Tominaga, Y., Ichinoe, A., et al., Mutator Phenotype of MUTYH-Null Mouse Embryonic Stem Cells, J. Biol. Chem, 2003, vol. 278, pp. 38 121–38 124.

    Google Scholar 

  108. Takao, M., Zhang, Q.-M., Yonei, S., and Yasui, A., Differential Subcellular Localization of Human mutY Homolog (hMYH) and the Functional Activity of Adenine: 8-Oxoguanine DNA Glycosylase, Nucleic Acids Res., 1999, vol. 27, pp. 3638–3644.

    Google Scholar 

  109. Parker, A., Gu, Y., and Lu, A.-L., Purification and Characterization of a Mammalian Homolog of Escherichia coli MutY Mismatch Repair Protein from Calf Liver Mitochondria, Nucleic Acids Res., 2000, vol. 28, pp. 3206–3215.

    Google Scholar 

  110. Ohtsubo, T., Nishioka, K., Imaiso, Y., et al., Identification of Human MutY Homolog (hMYH) As a Repair Enzyme for 2-Hydroxyadenine in DNA and Detection of Multiple Forms of hMYH Located in Nuclear and Mitochondria, Nucleic Acids Res., 2000, vol. 28, pp. 1355–1364.

    Google Scholar 

  111. Parker, A., Gu, Y., Mahoney, W., et al., Human Homolog of the MutY Repair Protein (hMYH) Physically Interacts with Proteins Involved in Long Patch DNA Base Excision Repair, J. Biol. Chem., 2001, vol. 276, pp. 5547–5555.

    Google Scholar 

  112. Gu, Y., Parker, A., Wilson, T.A., et al., Human MutY Homolog, a DNA Glycosylase Involved in Base Excision Repair, Physically and Functionally Interacts with Mismatch Repair Proteins Human MutS Homolog 2/Human MutS Homolog 6, J. Biol. Chem., 2002, vol. 277, pp. 11 135–11 142.

    Google Scholar 

  113. Tuo, J., Muftuoglu, M., Chen, C., et al., The Cockayne Syndrome Group B Gene Product Is Involved in General Genome Base Excision Repair of 8-Hydroxyguanine in DNA, J. Biol. Chem., 2001, vol. 276, pp. 45 772–45 779.

    Google Scholar 

  114. Tuo, J., Jaruga, P., Rodriguez, H., et al., The Cockayne Syndrome Group B Gene Product Is Involved in Cellular Repair of 8-Hydroxyguanine in DNA, J. Biol. Chem., 2002, vol. 277, pp. 30 832–30 837.

    Google Scholar 

  115. Thorslund, T., Scenesen, M., Bohr, V.A., and Stevnsner, T., Repair of 8-OxoG Is Slower in Endogenous Nuclear Genes Than in Mitochondrial DNA and Is without Strand Bias, DNA Repair, 2002, vol. 1, pp. 261–273.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Genetika, Vol. 41, No. 6, 2005, pp. 725–735.

Original Russian Text Copyright © 2005 by Korolev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korolev, V.G. Base Excision Repair of DNA: Glycosylases. Russ J Genet 41, 583–592 (2005). https://doi.org/10.1007/s11177-005-0131-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11177-005-0131-8

Keywords

Navigation