Skip to main content
Log in

Recognition of the Protonation Model of a Double-Stranded Polyribonucleic Acid by Spectrometry Data

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Simulated and experimental multivariate dependences observed on spectrometric acid-base titration of polyribonucleic acid were examined. Examination of the simulated data revealed the possibility for differentiating distribution diagrams of polymer species produced by complex formation with single- and double-stranded infinite polymers under conditions of incomplete concentration and spectral selectivity. The protonation constants of polycytidylic polyribonucleic acid were calculated from experimental data by using the developed chemometric procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Malinowsky, E.R. and Howery, D,G., Factor Analysis in Chemistry, New York: Wiley, 1980.

    Google Scholar 

  2. Computer Aids to Chemistry, Vernin, G. and Canon, M., Eds., New York: Wiley, 1986.

    Google Scholar 

  3. Massart, D.L., Vandeginste, B.G.M, Deming, S.N., Michotte, Y., and Kaufman, L., Chemometrics: A Textbook, Amsterdam: Elsevier, 1988.

    Google Scholar 

  4. Vandeginste, B.G.M, Derks, W., and Kateman, G., Anal. Chim. Acta, 1985, vol. 173, no.1, p. 253.

    Article  CAS  Google Scholar 

  5. Windig, W. and Guilment, J., Anal. Chem., 1991, vol. 63, no.14, p. 1425.

    Article  CAS  Google Scholar 

  6. Tauler, R. and Casassas, E., Analusis, 1992, vol. 20, p. 255.

    CAS  Google Scholar 

  7. Malinowski, E.R., J. Chemometrics, 1990, vol. 4, no.1, p. 29.

    Google Scholar 

  8. Gampp, H., Maeder, M, Meyer, C.J., and Zuberbuhler, D., Talanta, 1985, vol. 32, no.12, p. 1133.

    Article  CAS  Google Scholar 

  9. Gampp, H., Maeder, M, Meyer, C.J., and Zuberbuhler, D., Talanta, 1986, vol. 33, no.12, p. 943.

    Article  CAS  Google Scholar 

  10. Gampp, H., Maeder, M, Meyer, C.J., and Zuberbuhler, D., Anal. Chim. Acta, 1987, vol. 193, no.1, p. 287.

    Article  CAS  Google Scholar 

  11. Keller, H.R. and Massart, D.L., Anal. Chim Acta, 1991, vol. 246, no.2, p. 379.

    Article  CAS  Google Scholar 

  12. Keller, H.R., Massart, D.L., Liang, Y.Z., and Kvalheim, O.M., Anal. Chim. Acta, 1992, vol. 263, no.1, p. 29.

    CAS  Google Scholar 

  13. Tauler, R., Smilde, A., and Kowalski, B., J. Chemometrics, 1995, vol. 9, no.1, p. 31.

    Article  CAS  Google Scholar 

  14. Manne, R., Chemom. Intel. Lab. Syst., 1995, vol. 27, p. 89.

    CAS  Google Scholar 

  15. Kudrev, A.G., Koord. Khim., 1999, vol. 25, no.2, p. 152.

    Google Scholar 

  16. Kudrev, A.G. and Tauler, R., Abstracts of Papers, Euroanalysis IX: European Conf. on Analytical Chemistry, Bologna, 1996, p. 160.

  17. Kudrev, A.G., Tauler, R., and Izquierdo-Ridorsa, A., Abstracts of Papers, The Fifth Scandinavian Symposium on Chemometrics, Lahti, 1997, p. 65.

  18. Kudrev, A.G., Zh. Obshch. Khim., 2003, vol. 73, no.1, p. 23.

    Google Scholar 

  19. McGhee, J.D., von Hippel. P.H., J. Mol. Biol., 1974, vol. 86, no.2, p. 469.

    Article  CAS  Google Scholar 

  20. Scatchard, G., Ann. N. Y. Acad. Sci., 1949, vol. 51, p. 660.

    CAS  Google Scholar 

  21. Crothers, D.M., Biopolymers, 1968, vol. 6, no.4, p. 575.

    CAS  Google Scholar 

  22. Zasedatelev, A.S., Gurskii, G.V., and Vol'ken shtein, M.V., Mol. Biol., 1971, vol. 5, no.2, p. 245.

    CAS  Google Scholar 

  23. Hill, T.L., Cooperativity Theory in Biochemistry. Steady State and Equilibrium Systems, New York: Springer, 1985.

    Google Scholar 

  24. Gargallo, R., Tauler, R., and Izquierdo-Ridorsa, A., Anal. Chim. Acta, 1996, vol. 331, no.3, p. 195.

    Article  CAS  Google Scholar 

  25. Gargallo, R., Tauler R., and Izquierdo-Ridorsa, A., Anal. Chem., 1997, vol. 68, no.3, p. 1785.

    Google Scholar 

  26. Kudrev, A.G., Biofizika, 2002, vol. 47, no.3, p. 467.

    CAS  Google Scholar 

  27. Kudrev, A.G., Zh. Anal. Khim., 2000, vol. 55, no.2, p. 125.

    Google Scholar 

  28. Marquardt, D.W., J. Soc. Ind. Appl. Math., 1963, vol. 11, no.2, p. 431.

    Article  Google Scholar 

  29. Tauler, R., Casassas, E., and Izquierdo-Ridorsa, A., Anal. Chim. Acta, 1991, vol. 248, no.3, p. 447.

    CAS  Google Scholar 

  30. Casassas, E., Gargallo, R., Gimenez, I., Izquierdo-Ridorsa, A., and Tauler, R., Anal. Chim. Acta, 1993, vol. 283, no.3, p. 538.

    CAS  Google Scholar 

  31. Izquierdo-Ridorsa, A., Casassas, E., Gargallo, R., Marques, I., and Tauler, R., React. Funct. Polym., 1995, vol. 27, no.1, p. 1.

    Google Scholar 

  32. Izquierdo-Ridorsa, A., Saurina, J., Hernandez-Cassou, S., and Tauler, R., Chemom. Intel. Lab. Syst., 1997, vol. 38, p. 183.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Obshchei Khimii, Vol. 75, No. 8, 2005, pp. 1388–1395.

Original Russian Text Copyright © 2005 by Kudrev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kudrev, A.G. Recognition of the Protonation Model of a Double-Stranded Polyribonucleic Acid by Spectrometry Data. Russ J Gen Chem 75, 1318–1324 (2005). https://doi.org/10.1007/s11176-005-0417-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11176-005-0417-5

Keywords

Navigation