Skip to main content
Log in

Residue interactions affecting the deprotonation of internal guanine moieties in oligodeoxyribonucleotides, calculated by FMO methods

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The effect of vicinal molecular groups on the intrinsic acidity of a central guanine residue in short single-stranded DNA models and the potentials exerted by the backbone and the nucleobases on the leaving proton were determined by the fragment molecular orbital (FMO) method, in terms of quantum descriptors (QDs) and pair interaction interfragment decomposition analysis (PIEDA). The acidity of the central guanine moiety decreased with increasing oligonucleotide length, in response to changes by less than 1 eV in the ionization potential, global softness, electrophilicity index, and electronegativity descriptors. The differences in these descriptors were majorly interpreted in terms of the electrostatic influence of the negative charges residing on the backbone of the molecule. Additionally, this electric-field effect was determined explicitly for the displacement of the test hydronium ion to a distance of 250 Å from its original position, resulting in good agreement with calculations of the variation in Gibbs free energies, obtained from physical experiments conducted on the identical oligonucleotide sequences. The reported results are useful for biophysical applications of deoxyriboligonucleotides containing guanine residues in order to induce local negative charges at specific positions in the DNA chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All raw data are available from the authors upon request.

References

  1. Chatterjee S, Pathmasiri W, Plashkevych O, Honcharenko D, Varghese OP, Maiti M, Chattopadhyaya J (2006) The chemical nature of the 2′-substituent in the pentose-sugar dictates the pseudoaromatic character of the nucleobase (pKa) in DNA/RNA. Org Biomol Chem 4:1675–1686

    Article  CAS  PubMed  Google Scholar 

  2. Acharya S, Barman J, Cheruku P, Chatterjee S, Acharya P, Isaksson J, Chattopadhyaya J (2004) Significant pKa perturbation of nucleobases is an intrinsic property of the sequence context in DNA and RNA. J Am Chem Soc 126:8674–8681

    Article  CAS  PubMed  Google Scholar 

  3. Galindo-Murillo R, Bergonzo C, Cheatham III TE (2014) Molecular modeling of nucleic acid structure: energy and sampling. Curr Protoc Nucleic Acid Chem 56:7.10.1. https://doi.org/10.1002/0471142700.nc0708s04

  4. Šponer J, BanአP, Jurečka P, Zgarbová M, Kührová P, Havrila M, Krepl M, Stadlbauer P, Otyepka M (2014) Molecular dynamics simulations of nucleic acids. From tetranucleotides to the ribosome. J Phys Chem Lett 5:1771–1782

    Article  PubMed  Google Scholar 

  5. Šponer J, Shukla MK, Wang J., Leszczynski J (2017) Computational modeling of DNA and RNA fragments. In: Leszczynski J, Kaczmarek-Kedziera A, Puzyn T, G Papadopoulos M, Reis H, K. Shukla M (eds) Handbook of Computational Chemistry. Springer, Cham. p 1803–1826. https://doi.org/10.1007/978-3-319-27282-5_35

  6. Witts RN, Hopson EC, Koballa DE, Van Boening TA, Hopkins NH, Patterson EV, Nagan MC (2013) Backbone−base interactions critical to quantum stabilization of transfer RNA Anticodon Structure. J Phys Chem 117:7489−7497.

  7. Koch T, Shim I, Lindow M, Ørum H, Bohr HG (2014) Quantum mechanical studies of DNA and LNA. Nucleic Acid Ther 24:139–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bravaya KB, Epifanovsky E, Krylov AI (2012) Four bases score a run: ab initio calculations quantify a cooperative effect of H-bonding and π-stacking on the ionization energy of adenine in the AATT tetramer. J Phys Chem Lett 3:2726–2732

    Article  CAS  PubMed  Google Scholar 

  9. Tonzani S, Schatz GC (2008) Electronic excitations and spectra in single-stranded DNA. J Am Chem Soc 130:7607–7612

    Article  PubMed  Google Scholar 

  10. Kurisaki I, Fukuzawa K, Nakano T, Mochizuki Y, Watanabe H, Tanaka S (2010) Fragment molecular orbital (FMO) study on stabilization mechanism of neuro-oncological ventral antigen (NOVA)-RNA complex system. J Mol Struct 962:45–55

    Article  CAS  Google Scholar 

  11. Fukuzawa K, Komeiji Y, Mochizuki Y, Kato A, Nakano T, Tanaka S (2006) Intra- and intermolecular interactions between cyclic-AMP receptor protein and DNA: ab initio fragment molecular orbital study. J Comput Chem 27:948–960

    Article  CAS  PubMed  Google Scholar 

  12. Kurisaki I, Fukuzawa K, Komeiji Y, Mochizuki Y, Nakano T, Imada J, Chmielewski A, Rothstein SM, Watanabe H, Tanaka S (2007) Visualization analysis of inter-fragment interaction energies of CRP–cAMP–DNA complex based on the fragment molecular orbital method. Biophys Chem 130:1–9

    Article  CAS  PubMed  Google Scholar 

  13. Iwata T, Fukuzawa K, Nakajima K, Aida-Hyugaji S, Mochizuki Y, Watanabe H, Tanaka S (2008) Theoretical analysis of binding specificity of influenza viral hemagglutinin to avian and human receptors based on the fragment molecular orbital method. Comput Biol Chem 32:198–211

    Article  CAS  PubMed  Google Scholar 

  14. Mazanetz MP, Ichihara O, Law RJ, Whittaker M (2011) Prediction of cyclin-dependent kinase 2 inhibitor potency using the fragment molecular orbital method. J Cheminf 3:2

    Article  CAS  Google Scholar 

  15. Scharner J, Aznarez I (2020) Clinical Applications of Single-Stranded Oligonucleotides: Current Landscape of Approved and In-Development Therapeutics. Mol Ther 29:540–554

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bathe M, Rothemund PWK (2017) DNA nanotechnology: a foundation for programmable nanoscale materials. MRS Bulletin 42:882–888

    Article  CAS  Google Scholar 

  17. Gutmanas A, Alhroub Y, Battle GM, Berrisford JM, Bochet E, Conroy MJ, Dana JM, Fernández Montecelo MA, van Ginkel G, Gore SP, Haslam P, Hatherley R, Hendrickx PMS, Hirshberg M, Lagerstedt I, Mir S, Mukhopadhyay A, Oldfield TJ, Patwardhan A et al (2014) PDBe: Protein data bank in Europe. Nucleic Acids Res 42:D285

    Article  CAS  PubMed  Google Scholar 

  18. van Dijk M, Bonvin AM (2009) 3D-DART: a DNA structure modelling server. Nucleic Acids Res. 37(suppl 2):W235–W239

    Article  PubMed  PubMed Central  Google Scholar 

  19. El Hassan MA, Calladine CR (1997) Conformational characteristics of DNA: empirical classifications and a hypothesis for the conformational behaviour of dinucleotide steps. Philos T Roy Soc A 335:43–100

    Article  Google Scholar 

  20. Li H, Fedorov DG, Nagata T, Kitaura K, Jensen JH, Gordon MS (2010) Energy gradients in combined fragment molecular orbital and polarizable continuum model (FMO/PCM) calculation. J Comput Chem 31:778–790

    CAS  PubMed  Google Scholar 

  21. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery Jr JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  22. Suenaga M (2005) Facio: new computational chemistry environment for PC GAMESS. J Comput Chem 4:25–32

    CAS  Google Scholar 

  23. Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/

  24. Kitaura K, Ikeo E, Asada T, Nakano T, Uebayasi M (1999) Fragment molecular orbital method: an approximate computational method for large molecules. Chem Phys Lett 313:701–706

    Article  CAS  Google Scholar 

  25. Nakano T, Kaminuma T, Sato T, Fukuzawa K, Akiyama Y, Uebayasi M, Kitaura K (2002) Fragment molecular orbital method: use of approximate electrostatic potential. Chem Phys Lett 351:475–480

    Article  CAS  Google Scholar 

  26. Fedorov DG, Kitaura K (2007) Pair interaction energy decomposition analysis. J Comput Chem 28:222–237

    Article  CAS  PubMed  Google Scholar 

  27. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3093

    Article  CAS  Google Scholar 

  28. Fedorov DG, Kitaura K, Li H, Jensen JH, Gordon MS (2006) The polarizable continuum model (PCM) interfaced with the fragment molecular orbital method (FMO). J Comput Chem 27:976–985

    Article  CAS  PubMed  Google Scholar 

  29. Fedorov DG, Kitaura K (2012) Energy decomposition analysis in solution based on the fragment molecular orbital method. J Phys Chem A 116:704–719

    Article  CAS  PubMed  Google Scholar 

  30. Rajak SK, Islam N, Ghosh DC (2011) Modeling of the chemico-physical process of protonation of molecules entailing some quantum chemical descriptors. J Quantum Inf. Sci 1:87–95

    Article  CAS  Google Scholar 

  31. Origin (Pro), Version Number (2020b) OriginLab Corporation. Northampton, MA, USA

    Google Scholar 

  32. Koopmans T (1934) Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den einzelnen Elektronen eines Atoms. Physica 1:104–113

    Article  Google Scholar 

  33. Fukui K (1982) Role of frontier orbitals in chemical reactions. Science 218:747–754

    Article  CAS  PubMed  Google Scholar 

  34. Parr RG, Szentpaly LV, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924

    Article  CAS  Google Scholar 

  35. González-Olvera JC, Martínez-Reyes J, González-Jasso E, Pless RC (2015) Determination of pKa values for deprotonable nucleobases in model oligonucleotides. Biophys Chem 206:58–65

    Article  PubMed  Google Scholar 

  36. Isaksson J, Acharya S, Barman J, Cheruku P, Chattopadhyaya J (2004) Single-stranded adenine-rich DNA and RNA retain structural characteristics of their respective double-stranded conformations and show directional differences in stacking pattern. Biochemistry 43:15996–16010

    Article  CAS  PubMed  Google Scholar 

  37. Capobianco A, Caruso T, Peluso A (2015) Hole delocalization over adenine tracts in single stranded DNA oligonucleotides. Phys Chem Chem Phys 17:4750–4756

    Article  CAS  PubMed  Google Scholar 

  38. Chakraborty D, Hori N, Thirumalai D (2018) Sequence-dependent three interaction site model for single- and double-stranded DNA. J Chem Theory Comput 14:3763–3779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Capobianco A, Velardo A, Peluso A (2018) Single stranded DNA oligonucleotides retain rise coordinates characteristic of double helices. J Phys Chem B 122:7978–7989

    Article  CAS  PubMed  Google Scholar 

  40. Plumridge A, Meisburger SP, Andresen K, Pollack L (2017) The impact of base stacking on the conformations and electrostatics of single-stranded DNA. Nucleic Acids Res 45:3932–3943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Heck A, Woiczikowski PB, Kubař T, Welke K, Niehaus T, Giese B, Skourtis S, Elstner M, Steinbrecher TB (2014) Fragment orbital based description of charge transfer in peptides including backbone orbitals. J Phys Chem B 118:4261–4272

    Article  CAS  PubMed  Google Scholar 

  42. Fujita T, Mochizuki Y (2018) Development of the fragment molecular orbital method for calculating nonlocal excitations in large molecular systems. J Phys Chem A 122:3886–3898

    Article  CAS  PubMed  Google Scholar 

  43. Chakraborty K, Mantha S, Bandyopadhyaya S (2013) Molecular dynamics simulation of a single-stranded DNA with heterogeneous distribution of nucleobases in aqueous medium. J Chem Phys 139:075103

    Article  PubMed  Google Scholar 

  44. Chakraborty K, Bandyopadhyay S (2014) Correlated dynamical crossovers of the hydration layer of a single-stranded DNA oligomer. J Phys Chem B 118:413–422

    Article  CAS  PubMed  Google Scholar 

  45. Šponer J, Mládek A, Šponer JE, Svozil D, Zgarbová M, BanአP, Jurečka P, Otyepka M (2014) The DNA and RNA sugar–phosphate backbone emerges as the key player. An overview of quantum-chemical, structural biology and simulation studies. Phys Chem Chem Phys 14:15257–15277

    Article  Google Scholar 

Download references

Code availability

All the codes used in the calculations are available from the authors upon request.

Funding

JCGO received support from a Graduate student stipend from CONACYT. The stipend number is 37678. This work is part of CONACYT Basic Science Project No. 61322.

Author information

Authors and Affiliations

Authors

Contributions

All authors designed the project. JCGO and RCP performed the calculations. All authors contribute to writing of the manuscript.

Corresponding author

Correspondence to Julio C. González-Olvera.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 84 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Olvera, J.C., Zamorano-Carrillo, A., Arreola-Jardón, G. et al. Residue interactions affecting the deprotonation of internal guanine moieties in oligodeoxyribonucleotides, calculated by FMO methods. J Mol Model 28, 43 (2022). https://doi.org/10.1007/s00894-022-05033-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05033-x

Keywords

Navigation