Skip to main content
Log in

Conduction and Transport Numbers in Metacomposites MeWO4 ⋅ WO3 (Me = Ca, Sr, Ba)

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The conduction and transport numbers of charge carriers for composites in the systems MeWO4-WO3 (Me = Ca, Sr, Ba) are studied as a function of the temperature and the activity of oxygen in a gas phase. The transport numbers are determined by an emf method and are estimated from dependences of conductance on the activity of oxygen in a gas phase. The deficiencies of the given procedure as applied to investigation of properties of composite phases are analyzed. The materials under study are classified with a class of metacomposites. The concentration intervals of the ionic, mixed, and electronic conductions are determined. The conduction of composites of compositions (100 − x)MeWO4xWO3 is predominantly ionic at x ≤ 10 (Me = Ca), x ≤ 60 (Me = Sr), and x ≤ 45 (Me = Ba). The obtained data are explained in the framework of a model that represents a composite as a distributed matrix system where a film of surface phase MeW-s with a high mobility of oxygen ions plays the role of a connected matrix. It is presumed that the surface phase MeW-s possesses double-sided surface activity (α MeW-s\(\alpha _{WO_3 } ,\;\alpha _{MeWO_4 }\)) and a higher mobility with respect to MeWO4 and WO3. The discovered anomalies of dependences \(\sigma _{O^{2 - } }\)(T) and partial dependences \(\sigma _{O^{2 - } }\), σel(T) are explained by a change in the stoichiometry, morphology, and the degree of connectedness of surface phase MeW-s caused by with a change in the temperature and composition of composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Konisheva, E. and Neiman, A., in Ionic and Mixed Conducting Ceramics II, ECS Publications, PV 97-24, Pennington, New York, 1998, p. 423.

  2. Neiman, A.Ya., Zh. Fiz. Khim., 2001, vol. 75, p. 2119.

    Google Scholar 

  3. Konysheva, E.Yu. and Neiman, A.Ya., Elektrokhimiya, 2002, vol. 38, p. 419.

    Google Scholar 

  4. Smith, D.R., Schultz, S., Markos, P., and Soukoulis, C.M., Phys. Rev., 2002, vol. 65, p. 195.

    Google Scholar 

  5. Howard, Ch.J., Luca, V., and Knight, K.S., J. Phys.: Condens. Matter, 2002, vol. 14, p. 377.

    Google Scholar 

  6. Neiman, A.Ya. and Konisheva, E.Yu., Solid State Ionics, 1998, vol. 110, no.1–2, p. 121.

    Article  Google Scholar 

  7. Mokhosoev, M.V., Alekseev, F.P., and Lutsyk, V.I., Diagrammy sostoyaniya molibdatnykh i vol’framatnykh sistem (Phase Equilibrium Diagrams for Molybdates and Tungstates), Novosibirsk: Nauka, 1978.

    Google Scholar 

  8. Chang, L.Y., Scroger, M.G., and Phillips, B., J. Am. Ceram. Soc., 1966, vol. 49, p. 385.

    Google Scholar 

  9. Neiman, A.Ya., Solid State Ionics, 1996, vol. 83, p. 263.

    Article  Google Scholar 

  10. Konysheva, E.Yu. and Neiman, A.Ya., Elektrokhimiya, 1998, vol. 34, p. 272.

    Google Scholar 

  11. Neiman, A.Ya., Kalyakin, A.S., and Guseva, A.F., Izv. Akad. Nauk SSSR, Neorg. Mater., 1990, vol. 26, p. 1728.

    Google Scholar 

  12. Samsonov, G.V., Fiziko-khimicheskie svoistva okislov (Physicochemical Properties of Oxides), Moscow: Metallurgiya, 1978.

    Google Scholar 

  13. Chebotin, V.N. and Perfil’ev, M.V., Elektrokhimiya tverdykh elektrolitov (The Electrochemistry of Solid Electrolytes), Moscow: Khimiya, 1978.

    Google Scholar 

  14. Neiman, A.Ya., Cand. Sci. (Chem.) Dissertation, Sverdlovsk, 1975.

  15. Konysheva, E.Yu., Gorbunova, E.M., and Neiman, A.Ya., Izv. Akad. Nauk, Ser. Fiz., 2002, vol. 66, p. 829.

    Google Scholar 

  16. Chebotin, V.N., Fizicheskaya khimiya tverdogo tela (Physical Chemistry of Solids), Moscow: Khimiya, 1982.

    Google Scholar 

  17. Neiman, A.Ya., Gabrielyan, V.T., Karagezyan, S.M., Fedorova, L.M., and Tkachenko, E.V., Izv. Akad. Nauk SSSR, Neorg. Mater., 1980, vol. 16, p. 2025.

    Google Scholar 

  18. Konisheva, E., Gorbunova, E., and Neiman, A., Solid State Ionics, 2001, vol. 141-142, p. 141.

    Article  Google Scholar 

  19. Yaroslavtsev, A.B., Zh. Neorg. Khim., Prilozhenie 3, 2000, vol. 45, p. 249.

    Google Scholar 

  20. Diagrammy sostoyaniya sistem tugoplavkikh oksidov: Spravochnik, vypusk 5: Dvoinye sistemy, chast’ 4 (Phase Equilibrium Diagrams for Refractory Oxides: A Handbook, Issue 5: Binary Systems, pt. 4), Leningrad: Nauka, 1989.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ya. Neiman.

Additional information

__________

Translated from Elektrokhimiya, Vol. 41, No. 6, 2005, pp. 680–693.

Original Russian Text Copyright © 2005 by Neiman, Pestereva, Sharafutdinov, Kostikov.

Published on the basis of a report delivered at the VII Meeting on Fundamental Problems in Solid-State Ionics (Chernogolovka-2004).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neiman, A.Y., Pestereva, N.N., Sharafutdinov, A.R. et al. Conduction and Transport Numbers in Metacomposites MeWO4 ⋅ WO3 (Me = Ca, Sr, Ba). Russ J Electrochem 41, 598–611 (2005). https://doi.org/10.1007/s11175-005-0112-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11175-005-0112-1

Key words

Navigation