Skip to main content
Log in

Structural effects of the carboxylate anion on Ru-catalyzed C—H arylation of (hetero)aromatic substrates containing N-donor directing group

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Anions of carboxylic acids are widely used as the promoters of ruthenium-catalyzed reactions of C—H activation of substrates containing an N-donar directing group. The promoting effect of structure of anions of aliphatic and (hetero)aromatic carboxylic acids on the C—H arylation of benzene, furan, and thiophene rings in benzo[d]imidazol-2-yl-(hetero)arenes, wherein the benzimidazole moiety played the role of N-donor directing group, was evaluated. It was found that the structural effect of carboxylate anion on the efficiency of promotion of the catalytic system can significantly vary upon the arylation of different substrates. Adamantane-1-carboxylic acid was proposed as the most effective and universal promoter, based on which a new efficient catalytic system was developed for the selective arylation of benzo[d]imidazol-2-yl-(hetero)arenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. J. C. K. Chu, T. Rovis, Angew. Chem. Int. Ed., 2018, 57, 62; DOI: https://doi.org/10.1002/anie.201703743.

    Article  CAS  Google Scholar 

  2. P. Gandeepan, L. Ackermann, Chem, 2018, 4, 199; DOI: https://doi.org/10.1016/j.chempr.2017.11.002.

    Article  CAS  Google Scholar 

  3. P. Gandeepan, T. Müller, D. Zell, G. Cera, S. Warratz, L. Ackermann, Chem. Rev., 2019, 119, 2192; DOI: https://doi.org/10.1021/acs.chemrev.8b00507.

    Article  CAS  PubMed  Google Scholar 

  4. M. Seki, Org. Process Res. Dev., 2016, 20, 867; DOI: https://doi.org/10.1021/acs.oprd.6b00116.

    Article  CAS  Google Scholar 

  5. T. Cernak, K. D. Dykstra, S. Tyagarajan, P. Vachal, S. W. Krska, Chem. Soc. Rev., 2016, 45, 546; DOI: https://doi.org/10.1039/C5CS00628G.

    Article  CAS  PubMed  Google Scholar 

  6. T. Bura, J. T. Blaskovits, M. Leclerc, J. Am. Chem. Soc., 2016, 138, 10056; DOI: https://doi.org/10.1021/jacs.6b06237.

    Article  CAS  PubMed  Google Scholar 

  7. J. Hubrich, T. Himmler, L. Rodefeld, L. Ackermann, ACS Catal., 2015, 5, 4089; DOI: https://doi.org/10.1021/acscatal.5b00939.

    Article  CAS  Google Scholar 

  8. J. A. Leitch, C. G. Frost, Chem. Soc. Rev., 2017, 46, 7145; DOI: https://doi.org/10.1039/C7CS00496F.

    Article  CAS  PubMed  Google Scholar 

  9. P. Nareddy, F. Jordan, M. Szostak, ACS Catal., 2017, 7, 5721; DOI: https://doi.org/10.1021/acscatal.7b01645.

    Article  CAS  Google Scholar 

  10. K. Murali, L. A. Machado, R. L. Carvalho, L. F. Pedrosa, R. Mukherjee, E. N. Da Silva Júnior, D. Maiti, Chem. Eur. J., 2021, 27, 12453; DOI: https://doi.org/10.1002/chem.202101004.

    Article  CAS  PubMed  Google Scholar 

  11. R. Gramage-Doria, C. Bruneau, Coord. Chem. Rev., 2021, 428, 213602; DOI: https://doi.org/10.1016/j.ccr.2020.213602.

    Article  CAS  Google Scholar 

  12. K. S. Singh, Catalysts, 2019, 9, 173. https://doi.org/10.3390/catal9020173.

    Article  Google Scholar 

  13. P. B. Arockiam, C. Bruneau, P. H. Dixneuf, Chem. Rev., 2012, 112, 5879; DOI: https://doi.org/10.1021/cr300153j.

    Article  CAS  PubMed  Google Scholar 

  14. N. Kaloğlu, İ. Özdemir, N. Gürbüz, H. Arslan, P. H. Dixneuf, Molecules, 2018, 23; DOI: https://doi.org/10.3390/molecules23030647.

  15. E. Ferrer Flegeau, C. Bruneau, P. H. Dixneuf, A. Jutand, J. Am. Chem. Soc., 2011, 133, 10161; DOI: https://doi.org/10.1021/ja201462n.

    Article  PubMed  Google Scholar 

  16. P. B. Arockiam, C. Fischmeister, C. Bruneau, P. H. Dixneuf, Angew. Chem., Int. Ed., 2010, 49, 6629; DOI: https://doi.org/10.1002/anie.201002870.

    Article  CAS  Google Scholar 

  17. L. Ackermann, R. Vicente, H. K. Potukuchi, V. Pirovano, Org. Lett., 2010, 12, 5032; DOI: https://doi.org/10.1021/ol102187e.

    Article  CAS  PubMed  Google Scholar 

  18. B. Li, C. Darcel, P. H. Dixneuf, ChemCatChem, 2014, 6, 127; DOI: https://doi.org/10.1002/cctc.201300752.

    Article  CAS  Google Scholar 

  19. K. E. Shepelenko, K. A. Nikolaeva, M. A. Shevchenko, Y. N. Tkachenko, M. E. Minyaev, V. M. Chernyshev, Mendeleev Commun., 2022, 32, 205; DOI: https://doi.org/10.1016/j.mencom.2022.03.017.

    Article  CAS  Google Scholar 

  20. I. Fabre, N. von Wolff, G. Le Duc, E. Ferrer Flegeau, C. Bruneau, P. H. Dixneuf, A. Jutand, Chem. Eur. J., 2013, 19, 7595; DOI: https://doi.org/10.1002/chem.201203813.

    Article  CAS  PubMed  Google Scholar 

  21. L. Ackermann, Chem. Rev., 2011, 111, 1315; DOI: https://doi.org/10.1021/cr100412j.

    Article  CAS  PubMed  Google Scholar 

  22. L. Ackermann, R. Vicente, A. Althammer, Org. Lett., 2008, 10, 2299; DOI: https://doi.org/10.1021/ol800773x.

    Article  CAS  PubMed  Google Scholar 

  23. W. Li, P. B. Arockiam, C. Fischmeister, C. Bruneau, P. H. Dixneuf, Green Chem., 2011, 13, 2315; DOI: https://doi.org/10.1039/C1GC15642J.

    Article  CAS  Google Scholar 

  24. B. Zhao, Synth. Commun., 2013, 43, 2110; DOI: https://doi.org/10.1080/00397911.2012.688160.

    Article  CAS  Google Scholar 

  25. M. A. Abdullaziz, H. T. Abdel-Mohsen, A. M. El Kerdawy, F. A. F. Ragab, M. M. Ali, S. M. Abu-bakr, A. S. Girgis, H. I. El Diwani, Eur. J. Med. Chem., 2017, 136, 315; DOI: https://doi.org/10.1016/j.ejmech.2017.04.068.

    Article  CAS  PubMed  Google Scholar 

  26. L. Racané, I. Zlatar, N. Perin, M. Cindrić, V. Radovanović, M. Banjanac, S. Shanmugam, M. R. Stojković, K. Brajsa, M. Hranjec, Molecules, 2021, 26, 4935; DOI: https://doi.org/10.3390/molecules26164935.

    Article  PubMed  PubMed Central  Google Scholar 

  27. A. P. Orlov, T. P. Trofimova, M. A. Orlova, Russ. Chem. Bull., 2022, 71, 415; DOI: https://doi.org/10.1007/s11172-022-3429-y.

    Article  CAS  Google Scholar 

  28. A. V. Chernyshev, N. A. Voloshin, I. A. Rostovtseva, K. E. Shepelenko, I. V. Dorogan, E. V. Solov’eva, E. B. Gaeva, A. V. Metelitsa, Dyes Pigm., 2023, 215, 111249; DOI: https://doi.org/10.1016/j.dyepig.2023.111249.

    Article  CAS  Google Scholar 

  29. N. F. Aftab, K. S. Ahmad, M. M. Gul, Int. J. Environ. Anal. Chem., 2021, 2021, 1; DOI: https://doi.org/10.1080/03067319.2021.1949586.

    Google Scholar 

  30. J. Kim, S. Lee, S. Kim, M. Jung, H. Lee, M. S. Han, Dyes Pigm., 2020, 177, 108291; DOI: https://doi.org/10.1016/j.dyepig.2020.108291.

    Article  CAS  Google Scholar 

  31. L.-H. Chen, T.-Y. Wu, V. Paike, C.-M. Sun, Mol. Diversity, 2013, 17, 641; DOI: https://doi.org/10.1007/s11030-013-9460-z.

    Article  CAS  Google Scholar 

  32. Y. Kobayashi, M. Kashiwa, M. Sonoda, M. Kirihata, S. Tanimori, Synthesis, 2014, 46, 3185; DOI: https://doi.org/10.1055/s-0034-1379013.

    Article  CAS  Google Scholar 

  33. K. E. Shepelenko, K. A. Nikolaeva, I. G. Gnatiuk, O. G. Garanzha, A. A. Alexandrov, M. E. Minyaev, V. M. Chernyshev, Mendeleev Commun., 2022, 32, 485; DOI: https://doi.org/10.1016/j.mencom.2022.07.018.

    Article  CAS  Google Scholar 

  34. N. Gligorijević, S. Aranđelović, L. Filipović, K. Jakovljević, R. Janković, S. Grgurić-Šipka, I. Ivanović, S. Radulović, Ž. L. Tešić, J. Inorg. Biochem., 2012, 108, 53; DOI: https://doi.org/10.1016/j.jinorgbio.2011.12.002.

    Article  PubMed  Google Scholar 

  35. O. V. Khazipov, K. E. Shepelenko, S. B. Soliev, K. A. Nikolaeva, V. M. Chernyshev, V. P. Ananikov, ChemCatChem, 2022, 14, e202201055; DOI: https://doi.org/10.1002/cctc.202201055.

    Article  CAS  Google Scholar 

  36. M. M. Elchaninov, A. A. Aleksandrov, Russ. J. Org. Chem., 2018, 54, 1200; DOI: https://doi.org/10.1134/S1070428018080134.

    Article  CAS  Google Scholar 

  37. M. M. El’chaninov, L. Y. Oleinikova, A. M. Simonov, Chem. Heterocycl. Compd, 1979, 15, 856; DOI: https://doi.org/10.1007/BF00509788.

    Article  Google Scholar 

  38. J.-P. Wan, S.-F. Gan, J.-M. Wu, Y. Pan, Green Chem., 2009, 11, 1633; DOI: https://doi.org/10.1039/B914286J.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Academician of the Russian Academy of Sciences V.P. Ananikov for a fruitful discussion of the results reported herein and valuable comments. The authors are thankful to the Center for Shared Use “Nanotechnologies” at the M. I. Platov South-Russian State Polytechnic University and the Center for Shared Use at the N. D. Zelinski Institute of Organic Chemistry of the Russian Academy of Sciences for carrying out analytical experiments.

Funding

This work was financially supported by the Russian Science Foundation (Project No. 21-73-00058).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. E. Shepelenko or V. M. Chernyshev.

Ethics declarations

Animal Testing and Ethics

No human or animal subjects were used in this research.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note. Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 73, No. 3, pp. 497–504, March, 2024.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gnatiuk, I.G., Nikolaeva, K.A., Shepelenko, K.E. et al. Structural effects of the carboxylate anion on Ru-catalyzed C—H arylation of (hetero)aromatic substrates containing N-donor directing group. Russ Chem Bull 73, 497–504 (2024). https://doi.org/10.1007/s11172-024-4158-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-024-4158-1

Key words

Navigation