Skip to main content
Log in

Palladium-catalyzed regioselective synthesis of 2(2\(^{\prime }\)-biphenyl)benzimidazoles through C–H activation

  • Full-Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

An efficient palladium-catalyzed strategy through C–H bond activation for the synthesis of 2(2\(^{\prime }\)-biphenyl)-benzimidazoles is reported herein. The regioselective C–C bond formation proceeds in a sealed tube via oxidative C–H activation of ortho-directed 2-aryl-benzimidazole to couple with various iodobenzene analogs in high yields. This arylation exhibited high regioselectivity which is able to increase molecular diversity in difficult functionalized positions of parent molecules. This strategy provides a convenient and simple synthesis of biphenyl heterocyclic compounds with high regioselectivity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Fig. 3

Similar content being viewed by others

References

  1. Yu JQ, Shi ZJ (2010) C-H activation. Top Curr Chem Springer Berlin Heidelberg 292: xi-xiii. doi:10.1007/978-3-642-12356-6

  2. Gunay A, Theopold KH (2010) C–H bond activations by metal oxo compounds. Chem Rev 110:1060–1081. doi:10.1021/cr900269x

    Article  PubMed  CAS  Google Scholar 

  3. Ackermann L (2011) Carboxylate-assisted transition-metal-catalyzed C-H bond functionalizations: mechanism and scope. Chem Rev 111:1315–1345. doi:10.1021/cr100412j

    Article  PubMed  CAS  Google Scholar 

  4. Alberico D, Scott ME, Lautens M (2007) Aryl–aryl bond formation by transition-metal-catalyzed direct arylation. Chem Rev 107: 174–238. doi:10.1021/cr0509760

    Article  PubMed  CAS  Google Scholar 

  5. Chen X, Engle KM, Wang DH, Yu JQ (2009) Palladium(II)-catalyzed C–H activation/C–C cross-coupling reactions: versatility and practicality. Angew Chem Int Ed 48:5094–5115. doi:10.1002/anie.200806273

    Article  CAS  Google Scholar 

  6. Cardenas DJ, Martin-Matute B, Echavarren AM (2006) Aryl transfer between Pd(II) centers or Pd(IV) intermediates in Pd-catalyzed domino reactions. J Am Chem Soc 128:5033–5040. doi:10.1021/ja056661j

    Article  PubMed  CAS  Google Scholar 

  7. Corbet JP, Mignani G (2006) Selected patented cross-coupling reaction technologies. Chem Rev 106:2651–2710. doi:10.1021/cr0505268

    Article  PubMed  CAS  Google Scholar 

  8. Jana R, Pathak TP, Sigman MS (2011) Advances in transition metal (Pd, Ni, Fe)-catalyzed cross-coupling reactions using alkyl-organometallics as reaction partners. Chem Rev 111:1417–1492. doi:10.1021/cr100327p

    Article  PubMed  CAS  Google Scholar 

  9. Ritleng V, Sirlin C, Pfeffer M (2002) Ru-, Rh-, and Pd-catalyzed C–C bond formation involving C–H activation and addition on unsaturated substrates?: reactions and mechanistic aspects. Chem Rev 102:1731–1770. doi:10.1021/cr0104330

    Article  PubMed  CAS  Google Scholar 

  10. Sun CL, Li BJ, Shi ZJ (2011) Direct C–H transformation via iron catalysis. Chem Rev 111:1293–1314. doi:10.1021/cr100198w

    Article  PubMed  CAS  Google Scholar 

  11. Zhang J, Yang Q, Zhu Z, Yuan ML, Fu HY, Zheng XL, Chen H, Li RX (2012) Acetamide as cocatalyst for the nitrogen-directed coupling of arenes with aryl chlorides through ruthenium-catalyzed C–H activation. Eur J Org Chem 6702–6706. doi:10.1002/ejoc.201201127

  12. Daugulis O, Zaitsev VG (2005) Anilide ortho-arylation by using C–H activation methodology. Angew Chem Int Ed 44:4046–4048. doi:10.1002/anie.200500589

    Article  CAS  Google Scholar 

  13. Rousseaux S, Gorelsky S, Chung BKW, Fagnou K (2010) Investigation of the mechanism of C(sp\(^{3})\)–H bond cleavage in Pd(0)-catalyzed intramolecular alkane arylation adjacent to amides and sulfonamides. J Am Chem Soc 132:10692–10705. doi: 10.1021/ja103081n

    Article  PubMed  CAS  Google Scholar 

  14. Wang GW, Yuan TT, Wu XL (2008) Direct ortho-acetoxylation of anilides via palladium-catalyzed sp\(^{2}\) C–H bond oxidative activation. J Org Chem 71:4717–4720. doi: 10.1021/jo8003088

    Article  Google Scholar 

  15. Dupont J, Consorti CS, Spencer J (2005) The potential of palladacycles?: more than just precatalysts. Chem Rev 105:2527–2572. doi:10.1021/cr030681r

    Article  PubMed  CAS  Google Scholar 

  16. Yang S, Li B, Wan X, Shi Z (2007) Ortho arylation of acetanilides via Pd(II)-catalyzed C–H functionalization. J Am Chem Soc 129:6066–6067. doi:10.1021/ja070767s

    Article  PubMed  CAS  Google Scholar 

  17. Chen X, Goodhue CE, Yu JQ (2008) Palladium-catalyzed alkylation of sp\(^{2}\) and sp\(^{3}\) C–H bonds with methylboroxine and alkylboronic acids?: two distinct C–H activation pathways. J Am Chem Soc 128:12634–12635. doi: 10.1021/ja0646747

    Article  Google Scholar 

  18. Lyons TW, Sanford MS (2010) Palladium-catalyzed ligand-directed C–H functionalization reactions. Chem Rev 110: 1147–1169. doi:10.1021/cr900184e

    Article  PubMed  CAS  Google Scholar 

  19. Ozkay Y, Tunali Y, Karaca H, Isikdag I (2010) Antimicrobial activity and a SAR study of some novel benzimidazole derivatives bearing hydrazones moiety. Eur J Med Chem 45:3293–3298. doi:10.1016/j.ejmech.2010.04.012

    Article  PubMed  Google Scholar 

  20. Rewcastle GW, Gamage SA, Flanagan JU, Frederick R, Denny WA, Baguley BC, Kestell P, Singh R, Kendall JD, Marshall ES, Lill CL, Lee WJ, Kolekar S, Buchanan CM, Jamieson SMF, Shepherd PR (2011) Synthesis and biological evaluation of novel analogues of the pan class I phosphatidylinositol 3-kinase (PI3K) inhibitor 2-(difluoromethyl)-1-[4,6-di (4-morpholinyl)-1,3,5-triazin-2-yl]-1\(H\)-benzimidazole (ZSTK474). J Med Chem 54:7105–7126. doi:10.1021/jm200688y

    Google Scholar 

  21. Anthony NJ, Gomez RP, Stokker GE, Wai JS, Williams TM, Halczenko W, Hutchinson JH, Young SD, Solinsky KM (2000) US Patent 00608070A

  22. Charton J, Girault-Mizzi S, Debreu-Fontaine MA, Foufelle F, Hainault I, Bizot-Espiard JG, Caignard DH, Sergheraert C (2006) Synthesis and biological evaluation of benzimidazole derivatives as potent AMP-activated protein kinase activators. Bioorg Med Chem 14:4490–4518. doi:10.1016/j.bmc.2006.02.028

    Article  PubMed  CAS  Google Scholar 

  23. Tyagarajan S, Chakravarty PK, Zhou B, Fisher MH, Wyvratt MJ, Lyons K, Klatt T, Li X, Kumar S, Williams B, Felix J, Priest BT, Brochu RM, Warren V, Smith M, Garcia M, Kaczorowski GJ, Martin WJ, Abbadie C, McGowan E, Jochnowitz N, Parsons WH (2010) Substituted biaryl oxazoles, imidazoles, and thiazoles as sodium channel blockers. Bioorg Med Chem Lett 20:5536–5540. doi:10.1016/j.bmcl.2010.07.064

    Article  PubMed  CAS  Google Scholar 

  24. Benson SC, Pershadsingh H, Ho C, Chittiboyina A, Desai P, Pravenec M, Qi N, Wang J, Avery MA, Kurtz TW (2004) Identification of Telmisartan as a unique angiotensin II receptor antagonist with selective PPAR-modulating activity. Hypertension 43: 993–1002. doi:10.1161/01.HYP.0000123072.34629.57

    Article  PubMed  CAS  Google Scholar 

  25. Kubo K, Kohara Y, Imamiya E, Sugiura Y, Inada Y, Furukawa Y, Nishikawa K, Naka T (1993) Nonpeptide angiotensin II receptor antagonists. Synthesis and biological activity of benzimidazolecarboxylic acids. J Med Chem 36:2182–2195. doi:10.1021/jm00067a016

    Google Scholar 

  26. Bali A, Bansal Y, Sugumaran M, Saggu JS, Balakumar P, Kaur G, Bansal G, Sharma A, Singh M (2005) Design, synthesis, and evaluation of novelly substituted benzimidazole compounds as angiotensin II receptor antagonists. Bioorg Med Chem Lett 15:3962–3965. doi:10.1016/j.bmcl.2005.05.054

    Google Scholar 

  27. Kim Y, Kumar MR, Park N, Heo Y, Lee S (2011) Copper-catalyzed, one-pot, three-component synthesis of benzimidazoles by condensation and C–N bond formation. J Org Chem 76:9577–9583. doi:10.1021/jo2019416

    Article  PubMed  CAS  Google Scholar 

  28. Rosenberg AJ, Zhao J, Clark DA (2012) Synthesis of imidazo[4, 5-b]pyridines and imidazo[4,5-b]pyrazines by palladium catalyzed amidation of 2-chloro-3-aminoheterocycles. Org Lett 14: 1764–1767. doi:10.1021/ol300359s

    Google Scholar 

  29. Bellina F, Cauteruccio S, Rossi R (2006) Palladium- and copper-mediated direct C-2 arylation of azoles-including free (NH)-imidazole, -benzimidazole and -indole - under base-free and ligandless conditions. Eur J Org Chem 1379–1382. doi:10.1002/ejoc.200500957

  30. Charton J, Girault-Mizzi S, Sergheraert C (2005) Conversion of sterically hindered diacylated 1,2-phenylenediamines into 2-substituted benzimidazoles. Chem Pharm Bull 35: 492–497

    Google Scholar 

  31. Stibrany RT, Lobanov MV, Schugar HJ, Potenza JA (2004) A geometrically constraining bis(benzimidazole) ligand and its nearly tetrahedral complexes with Fe(II) and Mn(II). Inorg Chem 43:1472–1480. doi:10.1021/ic030180o

    Article  PubMed  CAS  Google Scholar 

  32. Wang R, Lu XX, Yu XQ, Shi L, Sun Y (2007) Acid-catalyzed solvent-free synthesis of 2-arylbenzimidazoles under microwave irradiation. J Mol Catal A 266:198–201. doi:10.1016/j.molcata.2006.04.071

    Article  CAS  Google Scholar 

  33. Blettner CG, Konig WA, Rühter G, Stenzel W, Schotten T (1999) Parallel synthesis of polyethylene glycol supported biaryl benzimidazoles and imidazopyridines. Synlett 3:307–310

    Article  Google Scholar 

  34. Miyamura C, Tsurugi H, Satoh T, Miura M (2008) Rhodium-catalyzed regioselective arylation of phenylazoles and related compounds with arylboron reagents via C–H bond cleavage. J Organomet Chem 693:2438–2442. doi:10.1016/j.jorganchem.2008.04.029

    Article  CAS  Google Scholar 

  35. Peng J, Shang G, Chen C, Miao Z, Li B (2013) Nucleophilic addition of benzimidazoles to alkynyl bromides/palladium-catalyzed intramolecular C–H vinylation: synthesis of benzo[4,5]imidazo[2,1-a]isoquinolines. J Org Chem 78:1242–1248. doi:10.1021/jo302471z

    Article  PubMed  CAS  Google Scholar 

  36. Yellol GS, Chung TW, Sun CM (2010) Novel cyclization of bis-boc-guanidines: expeditive traceless synthesis of 1,3,5-oxadiazinones under microwave conditions. Chem Commun 46:9170–9172. doi:10.1039/c0cc03519j

    Article  CAS  Google Scholar 

  37. Chen CH, Yellol GS, Lin PT, Sun CM (2011) Base-catalyzed Povarov reaction: an unusual [1,3] sigmatropic rearrangement to dihydropyrimidobenzimidazoles. Org Lett 13:5120–5123. doi:10.1021/ol201985p

    Article  PubMed  CAS  Google Scholar 

  38. Bancroft DP, Cotton A, Verbruggen M (1989) Trans-(dimethyl sulfoxide-O) (dimethyl sulfoxide-S) bis(trifluoroacetato)palladium(II); alternative ligation modes of an ambidentate ligand. Acta Crystallogr C 45:1289–1292. doi:10.1107/S0108270189001459

    Google Scholar 

  39. Lirag RC, Ley HTM, Miljanic OS (2013) L-shaped benzimidazole fluorophores: synthesis, characterization and optical response to bases, acids and anions. Chem Commun 49:4304–4306. doi:10.1039/c2cc37120k

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank the National Science Council of Taiwan for financial support and the authorities of the National Chiao Tung University for providing the laboratory facilities. This study was particularly supported by the “Centre for Bioinformatics Research of Aiming for the Top University Plan” of the National Chiao Tung University and Ministry of Education, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung-Ming Sun.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 7253 KB)

Supplementary material 2 (doc 3376 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, LH., Wu, TY., Paike, V. et al. Palladium-catalyzed regioselective synthesis of 2(2\(^{\prime }\)-biphenyl)benzimidazoles through C–H activation. Mol Divers 17, 641–649 (2013). https://doi.org/10.1007/s11030-013-9460-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-013-9460-z

Keywords

Navigation