Skip to main content
Log in

Synthesis of 4-(3-azidopropoxy)phenyl glycoside of tetraarabinofuranoside related to the terminal fragment of arabinogalactan and lipoarabinomannan of mycobacteria

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

A convergent synthesis of tetraarabinofuranoside β-d-Araf-(1→2)-α-d-Araf-(1→3)-α-d-Araf-(1→5)-α-d-Araf-1↑OR (R is 4-(3-azidopropoxy)phenyl) related to the terminal fragment of lipoarabinomannan (LAM) and arabinogalactan of mycobacteria was developed. The synthesized tetraarabinofuranoside represents a linear motif of a branched hexaarabinofuranoside, which is the main LAM epitope. 4-(3-Azidopropoxy)phenyl aglycone belongs to the class of Janus aglycones, which can serve as both a temporary protective group for the anomeric position of carbohydrate and a (pre)spacer for the synthesis of neoglycoconjugates useful for the development of new tuberculosis diagnostic assays. The key step of the synthesis is the formation of 1,2-cis-glycosidic bond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. World Health Organization, Tuberculosis Fact Sheet;https://www.who.int/en/news-room/fact-sheets/detail/tuberculosis (accessed March 3, 2023).

  2. W. F. Paolo, J. D. Nosanchuk, Lancet Infect. Dis., 2004, 4, 287–293; DOI: https://doi.org/10.1016/s1473-3099(04)01004-7.

    Article  PubMed  Google Scholar 

  3. P. D. O. Davies, Ann. Med., 2009, 35, 235–243; DOI: https://doi.org/10.1080/07853890310005713.

    Article  Google Scholar 

  4. B. Hamasur, G. Ka, S. B. Svenson, Vaccine, 1999, 17, 2853–2861.

    Article  CAS  PubMed  Google Scholar 

  5. H.-S. Kim, E. S. M. Ng, R. B. Zheng, R. M. Whittal, D. C. Schriemer, T. L. Lowary, in Carbohydrate-Based Vaccines, Ed. R. Roy, American Chemical Society, 2008, p. 184–198; DOI: https://doi.org/10.1021/bk-2008-0989.ch009.

  6. R. B. Zheng, S. A. F. Jegouzo, M. Joe, Y. Bai, H. A. Tran, K. Shen, J. Saupe, L. Xia, M. F. Ahmed, Y. H. Liu, P. S. Patil, A. Tripathi, S. C. Hung, M. E. Taylor, T. L. Lowary, K. Drickamer, ACS Chem. Biol., 2017, 12, 2990–3002; DOI: https://doi.org/10.1021/acschembio.7b00797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Z. H. Li, T. Bavaro, S. Tengattini, R. Bernardini, M. Mattei, F. Annunziata, R. B. Cole, C. P. Zheng, M. Sollogoub, L. Tamborini, M. Terreni, Y. M. Zhang, Eur. J. Med. Chem., 2020, 204, 112578; DOI: https://doi.org/10.1016/j.ejmech.2020.112578.

    Article  CAS  PubMed  Google Scholar 

  8. T. T. Chen, C. Blanc, Y. Y. Liu, E. Ishida, S. Singer, J. Y. Xu, M. Joe, E. R. Jenny-Avital, J. Chan, T. L. Lowary, J. M. Achkar, J. Clin. Invest., 2020, 130, 1808–1822; DOI: https://doi.org/10.1172/jci128459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. G. L. Burygin, P. I. Abronina, N. M. Podvalnyy, S. A. Staroverov, L. O. Kononov, L. A. Dykman, Beilstein J. Nanotechnol., 2020, 11, 480–493; DOI: https://doi.org/10.3762/bjnano.11.39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. K. G. Fedina, P. I. Abronina, N. M. Podvalnyy, N. N. Kondakov, A. O. Chizhov, V. I. Torgov, L. O. Kononov, Carbohydr. Res., 2012, 357, 62–67; DOI: https://doi.org/10.1016/j.carres.2012.05.021.

    Article  CAS  PubMed  Google Scholar 

  11. N. M. Podvalnyy, P. I. Abronina, K. G. Fedina, N. N. Kondakov, A. I. Zinin, A. O. Chizhov, V. I. Torgov, V. V. Kachala, L. O. Kononov, Russ. Chem. Bull., 2015, 64, 1149–1162; DOI: https://doi.org/10.1007/s11172-015-0992-5.

    Article  CAS  Google Scholar 

  12. A. Y. Chernyak, G. V. M. Sharma, L. O. Kononov, P. R. Krishna, A. B. Levinsky, N. K. Kochetkov, A. V. Rama Rao, Carbohydr. Res., 1992, 223, 303–309; DOI: https://doi.org/10.1016/0008-6215(92)80029-Z.

    Article  CAS  Google Scholar 

  13. P. I. Abronina, K. G. Fedina, N. M. Podvalnyy, A. I. Zinin, A. O. Chizhov, N. N. Kondakov, V. I. Torgov, L. O. Kononov, Carbohydr. Res., 2014, 396, 25–36; DOI: https://doi.org/10.1016/j.carres.2014.05.017.

    Article  CAS  PubMed  Google Scholar 

  14. P. I. Abronina, N. M. Podvalnyy, T. M. Mel’nikova, A. I. Zinin, K. G. Fedina, V. V. Kachala, V. I. Torgov, L. O. Kononov, E. A. Panfertsev, E. V. Baranova, V. V. Mochalov, V. I. Dyatlova, S. F. Biketov, Russ. Chem. Bull., 2010, 59, 2333–2337; DOI: https://doi.org/10.1007/s11172-010-0397-4.

    Article  CAS  Google Scholar 

  15. A. G. Korolyova-Ushakova, E. V. Baranova, S. G. Ignatov, P. V. Soloviev, N. N. Kondakov, T. M. Mel’nikova, P. I. Abronina, N. M. Podval’nyi, L. O. Kononov, S. F. Biketov, Appl. Biochem. Microbiol., 2019, 55, 696–703; DOI: https://doi.org/10.1134/S0003683819060097.

    Article  CAS  Google Scholar 

  16. A. G. Koroleva-Ushakova, E. V. Baranova, S. G. Ignatov, P. V. Solov’ev, S. F. Biketov, P. I. Abronina, N. N. Kondakov, T. M. Mel’nikova, L. O. Kononov, L. V. Saroyants, V. Z. Naumov, V. V. Duyko, Infect. Bolezni [Infect. Diseases], 2020, 18, 164–168; DOI: https://doi.org/10.20953/1729-9225-2020-4-164-168 (in Russian).

    Article  Google Scholar 

  17. P. I. Abronina, N. N. Malysheva, E. V. Stepanova, J. S. Shvyrkina, A. I. Zinin, L. O. Kononov, Eur. J. Org. Chem., 2022, 2022, e202201110; DOI: https://doi.org/10.1002/ejoc.202201110.

    Article  CAS  Google Scholar 

  18. P. I. Abronina, N. N. Malysheva, A. I. Zinin, L. O. Kononov, Russ. Chem. Bull., 2023, 72, 1046–1058; DOI: https://doi.org/10.1007/s11172-023-3870-7.

    Article  CAS  Google Scholar 

  19. E. V. Stepanova, N. M. Podvalnyy, P. I. Abronina, L. O. Kononov, Synlett, 2018, 29, 2043–2045; DOI: https://doi.org/10.1055/s-0037-1610648.

    Article  CAS  Google Scholar 

  20. S. Cecioni, J. P. Praly, S. E. Matthews, M. Wimmerova, A. Imberty, S. Vidal, Chem. Eur. J., 2012, 18, 6250–6263; DOI: https://doi.org/10.1002/chem.201200010.

    Article  CAS  PubMed  Google Scholar 

  21. S. Cecioni, A. Imberty, S. Vidal, Chem. Rev., 2015, 115, 525–561; DOI: https://doi.org/10.1021/cr500303t.

    Article  CAS  PubMed  Google Scholar 

  22. C. Ligeour, L. Dupin, A. Angeli, G. Vergoten, S. Vidal, A. Meyer, E. Souteyrand, J. J. Vasseur, Y. Chevolot, F. Morvan, Org. Biomol. Chem., 2015, 13, 11244–11254; DOI: https://doi.org/10.1039/c5ob01445j.

    Article  CAS  PubMed  Google Scholar 

  23. S. Wang, L. Dupin, M. Noel, C. J. Carroux, L. Renaud, T. Gehin, A. Meyer, E. Souteyrand, J. J. Vasseur, G. Vergoten, Y. Chevolot, F. Morvan, S. Vidal, Chem. Eur. J., 2016, 22, 11785–11794; DOI: https://doi.org/10.1002/chem.201602047.

    Article  CAS  PubMed  Google Scholar 

  24. A. Angeli, M. Li, L. Dupin, G. Vergoten, M. Noel, M. Madaoui, S. Wang, A. Meyer, T. Gehin, S. Vidal, J. J. Vasseur, Y. Chevolot, F. Morvan, ChemBioChem, 2017, 18, 1036–1047; DOI: https://doi.org/10.1002/cbic.201700154.

    Article  CAS  PubMed  Google Scholar 

  25. A. Angeli, L. Dupin, M. Madaoui, M. C. Li, G. Vergoten, S. Wang, A. Meyer, T. Gehin, S. Vidal, J. J. Vasseur, Y. Chevolot, F. Morvan, ChemistrySelect, 2017, 2, 10420–10427; DOI: https://doi.org/10.1002/slct.201702131.

    Article  CAS  Google Scholar 

  26. R. S. Bagul, M. Hosseini, T. C. Shiao, N. K. Saadeh, R. Roy, Polym. Chem., 2017, 8, 5354–5366; DOI: https://doi.org/10.1039/c7py01044c.

    Article  CAS  Google Scholar 

  27. T. L. Lowary, Acc. Chem. Res., 2016, 49, 1379–88; DOI: https://doi.org/10.1021/acs.accounts.6b00164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. L. Wang, Z. Guo, J. Carbohydr. Chem., 2019, 38, 269–334; DOI: https://doi.org/10.1080/07328303.2019.1630839.

    Article  CAS  Google Scholar 

  29. L. Han, L. Wang, Z. Guo, J. Carbohydr. Chem., 2019, 38, 335–382; DOI: https://doi.org/10.1080/07328303.2019.1630840.

    Article  CAS  Google Scholar 

  30. K. Liu, L. Wang, Z. Guo, J. Carbohydr. Chem., 2019, 38, 414–469; DOI: https://doi.org/10.1080/07328303.2019.1630841.

    Article  CAS  Google Scholar 

  31. R. P. Sweeney, T. L. Lowary, in Comprehensive Glycoscience, 2nd ed., Eds J. J. Barchi, S. Vidal, Elsevier, Amsterdam, 2021, p. 267–285; DOI: https://doi.org/10.1016/B978-0-12-819475-1.00064-X.

    Chapter  Google Scholar 

  32. P. I. Abronina, N. M. Podvalnyy, L. O. Kononov, Russ. Chem. Bull., 2022, 71, 6–29; DOI: https://doi.org/10.1007/s11172-022-3371-z.

    Article  CAS  Google Scholar 

  33. P. I. Abronina, A. I. Zinin, N. N. Malysheva, E. V. Stepanova, A. O. Chizhov, V. I. Torgov, L. O. Kononov, Synlett, 2017, 28, 1608–1613; DOI: https://doi.org/10.1055/s-0036-1589028.

    Article  CAS  Google Scholar 

  34. P. I. Abronina, A. I. Zinin, D. A. Romashin, N. N. Malysheva, A. O. Chizhov, L. O. Kononov, Synlett, 2015, 26, 2267–2271; DOI: https://doi.org/10.1055/s-0035-1560172.

    Article  CAS  Google Scholar 

  35. P. I. Abronina, A. I. Zinin, D. A. Romashin, V. V. Tereshina, A. O. Chizhov, L. O. Kononov, Carbohydr. Res., 2018, 464, 28–43; DOI: https://doi.org/10.1016/j.carres.2018.05.00.

    Article  CAS  PubMed  Google Scholar 

  36. P. Abronina, A. Zinin, A. Chizhov, L. Kononov, Eur. J. Org. Chem., 2020, 2020, 4146–4160; DOI: https://doi.org/10.1002/ejoc.202000520.

    Article  CAS  Google Scholar 

  37. N. N. Kondakov, T. M. Mel’nikova, A. I. Zinin, V. I. Torgov, A. O. Chizhov, E. A. Gordeeva, N. V. Bovin, L. O. Kononov, Russ. Chem. Bull., 2014, 63, 501–506; DOI: https://doi.org/10.1007/s11172-014-0460-7.

    Article  CAS  Google Scholar 

  38. N. N. Kondakov, T. M. Mel’nikova, T. V. Chekryzhova, M. V. Mel’nikova, A. I. Zinin, V. I. Torgov, A. O. Chizhov, L. O. Kononov, Russ. Chem. Bull., 2015, 64, 1142–1148; DOI: https://doi.org/10.1007/s11172-015-0991-6.

    Article  CAS  Google Scholar 

  39. N. M. Podvalnyy, A. O. Chizhov, A. I. Zinin, L. O. Kononov, Carbohydr. Res., 2016, 431, 25–32; DOI: https://doi.org/10.1016/j.carres.2016.05.009.

    Article  CAS  PubMed  Google Scholar 

  40. L. O. Kononov, K. G. Fedina, A. V. Orlova, N. N. Kondakov, P. I. Abronina, N. M. Podvalnyy, A. O. Chizhov, Carbohydr. Res., 2017, 437, 28–35; DOI: https://doi.org/10.1016/j.carres.2016.11.009.

    Article  CAS  PubMed  Google Scholar 

  41. M. V. Panova, N. M. Podvalnyy, E. L. Okun, P. I. Abronina, A. O. Chizhov, L. O. Kononov, Carbohydr. Res., 2018, 456, 35–44; DOI: https://doi.org/10.1016/j.carres.2017.11.002.

    Article  CAS  PubMed  Google Scholar 

  42. N. N. Kondakov, M. V. Panova, P. I. Abronina, A. I. Zinin, A. M. Shpirt, L. O. Kononov, Russ. Chem. Bull., 2019, 68, 416–423; DOI: https://doi.org/10.1007/s11172-019-2402-x.

    Article  CAS  Google Scholar 

  43. I. V. Myachin, Z. Z. Mamirgova, E. V. Stepanova, A. I. Zinin, A. O. Chizhov, L. O. Kononov, Eur. J. Org. Chem., 2022, 2022, e202101377; DOI: https://doi.org/10.1002/ejoc.202101377.

    Article  CAS  Google Scholar 

  44. E. V. Stepanova, P. I. Abronina, A. I. Zinin, A. O. Chizhov, L. O. Kononov, Carbohydr. Res., 2019, 471, 95–104; DOI: https://doi.org/10.1016/j.carres.2018.11.013.

    Article  CAS  PubMed  Google Scholar 

  45. E. V. Stepanova, A. I. Zinin, P. I. Abronina, A. O. Chizhov, L. O. Kononov, Synlett, 2020, 31, 1491–1496; DOI: https://doi.org/10.1055/s-0040-1707137.

    Article  Google Scholar 

  46. P. I. Abronina, N. N. Malysheva, A. I. Zinin, M. Y. Karpenko, N. G. Kolotyrkina, L. O. Kononov, Synlett, 2022, 33, 473–477; DOI: https://doi.org/10.1055/a-1730-9458.

    Article  CAS  Google Scholar 

  47. H. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem., Int. Ed., 2001, 40, 2004–2021; DOI: https://doi.org/10.1002/1521-3773(20010601)40:11<2004::Aid-anie2004>3.0.Co;2-5.

    Article  CAS  Google Scholar 

  48. V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless, Angew. Chem., Int. Ed., 2002, 41, 2596–2599; DOI: https://doi.org/10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4.

    Article  CAS  Google Scholar 

  49. C. W. Tornøe, C. Christensen, M. Meldal, J. Org. Chem., 2002, 67, 3057–3064; DOI: https://doi.org/10.1021/jo011148j.

    Article  PubMed  Google Scholar 

  50. S. Dedola, S. A. Nepogodiev, R. A. Field, Org. Biomol. Chem., 2007, 5, 1006–1017; DOI: https://doi.org/10.1039/b618048p.

    Article  CAS  PubMed  Google Scholar 

  51. M. Meldal, C. W. Tornøe, Chem. Rev., 2008, 108, 2952–3015; DOI: https://doi.org/10.1021/cr0783479.

    Article  CAS  PubMed  Google Scholar 

  52. C. Najera, J. M. Sansano, Org. Biomol. Chem., 2009, 7, 4567–4581; DOI: https://doi.org/10.1039/b913066g.

    Article  CAS  PubMed  Google Scholar 

  53. X. P. He, Y. L. Zeng, Y. Zang, J. Li, R. A. Field, G. R. Chen, Carbohydr. Res., 2016, 429, 1–22; DOI: https://doi.org/10.1016/j.carres.2016.03.022.

    Article  CAS  PubMed  Google Scholar 

  54. V. K. Tiwari, B. B. Mishra, K. B. Mishra, N. Mishra, A. S. Singh, X. Chen, Chem. Rev., 2016, 116, 3086–3240; DOI: https://doi.org/10.1021/acs.chemrev.5b00408.

    Article  CAS  PubMed  Google Scholar 

  55. V. Poonthiyil, T. K. Lindhorst, V. B. Golovko, A. J. Fairbanks, Beilstein J. Org. Chem., 2018, 14, 11–24; DOI: https://doi.org/10.3762/bjoc.14.2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. A. K. Agrahari, P. Bose, M. K. Jaiswal, S. Rajkhowa, A. S. Singh, S. Hotha, N. Mishra, V. K. Tiwari, Chem. Rev., 2021, 121, 7638–7956; DOI: https://doi.org/10.1021/acs.chemrev.0c00920.

    Article  CAS  PubMed  Google Scholar 

  57. N. Yu. Savelyeva, A. M. Shpirt, A. V. Orlova, A. O. Chizhov, L. O. Kononov, Russ. Chem. Bull., 2022, 71, 1784–1793; DOI: https://doi.org/10.1007/s11172-022-3590-3.

    Article  CAS  Google Scholar 

  58. A. S. Kritchenkov, Yu. A. Skorik, Russ. Chem. Bull., 2017, 66, 769–781; DOI: https://doi.org/10.1007/s11172-017-1809-5.

    Article  CAS  Google Scholar 

  59. A. A. Druzina, M. Yu. Stogniy, Russ. Chem. Bull., 2021, 70, 527–532; DOI: https://doi.org/10.1007/s11172-021-3119-1.

    Article  CAS  Google Scholar 

  60. A. Yu. Aksinenko, V. B. Sokolov, A. V. Gabrel’yan, V. V. Grigoriev, S. O. Bachurin, Russ. Chem. Bull., 2021, 70, 2180–2184; DOI: https://doi.org/10.1007/s11172-021-3329-6.

    Article  CAS  Google Scholar 

  61. P. I. Abronina, S. L. Sedinkin, N. M. Podvalnyy, K. G. Fedina, A. I. Zinin, V. I. Torgov, L. O. Kononov, Tetrahedron Lett., 2011, 52, 1794–1796; DOI: https://doi.org/10.1016/j.tetlet.2011.02.019.

    Article  CAS  Google Scholar 

  62. P. I. Abronina, N. M. Podvalnyy, S. L. Sedinkin, K. G. Fedina, A. I. Zinin, A. O. Chizhov, V. I. Torgov, L. O. Kononov, Synthesis, 2012, 44, 1219–1225; DOI: https://doi.org/10.1055/s-0031-1290752.

    Article  CAS  Google Scholar 

  63. U. Jost, P. I. Abronina, A. I. Zinin, D. Michalik, U. Kragl, N. N. Kondakov, A. O. Chizov, V. I. Torgov, L. O. Kononov, Russ. Chem. Bull., 2018, 67, 2297–2306; DOI: https://doi.org/10.1007/s11172-018-2373-3.

    Article  CAS  Google Scholar 

  64. P. I. Abronina, J. S. Shvyrkina, A. I. Zinin, A. O. Chizhov, L. O. Kononov, Russ. Chem. Bull., 2022, 71, 2740–2750; DOI: https://doi.org/10.1007/s11172-022-3703-z.

    Article  CAS  Google Scholar 

  65. W. L. F. Armarego, Purification of Laboratory Chemicals, 8th ed., Butterworth-Heinemann, 2017, 1198 pp.; DOI: https://doi.org/10.1016/B978-0-12-805457-4.50008-2.

  66. U. Huchel, P. Tiwari, R. R. Schmidt, J. Carbohydr. Chem., 2010, 29, 61–75; DOI: https://doi.org/10.1080/07328301003597673.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to A. O. Chizhov and N. G. Kolotyrkina (both from N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences) for performing high-resolution mass spectrometry.

Funding

This work was financially supported by the Russian Science Foundation (Project No. 21-73-20164).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. I. Abronina or L. O. Kononov.

Ethics declarations

Animal Testing and Ethics

No human or animal subjects were used in this research.

Conflict of Interest

The authors declare no competing interests.

Additional information

Dedicated to Academician of the Russian Academy of Sciences M. P. Egorov on the occasion of his 70th birthday.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 73, No. 1, pp. 189–203, January, 2024.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abronina, P.I., Karpenko, M.Y., Malysheva, N.N. et al. Synthesis of 4-(3-azidopropoxy)phenyl glycoside of tetraarabinofuranoside related to the terminal fragment of arabinogalactan and lipoarabinomannan of mycobacteria. Russ Chem Bull 73, 189–203 (2024). https://doi.org/10.1007/s11172-024-4131-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-024-4131-z

Key words

Navigation