Skip to main content

Advertisement

Log in

The use of silyl groups in the synthesis of arabinofuranosides

  • Reviews
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The review considers the known strategies for the synthesis of fragments of arabinogalactan and lipoarabinomannan, polysaccharides that are contained in the cell walls of causative agent of tuberculosis Mycobacterium tuberculosis, as well as other related oligosaccharides containing arabinofuranose residues, using silyl substituents both for the differentiation of hydroxy groups in monosaccharide blocks and as stereodirecting groups during formation of a β-arabinofuranoside bond. In particular, the use of silyl groups (in combination with orthogonal to them acyl groups) allows the stereoselective synthesis of arabinans without the involvement of benzyl groups removable under reducing conditions, which is unacceptable in the presence of fragments sensitive to hydrogenolysis. This significantly simplifies the synthesis of 1,2-cis-linked oligosaccharides containing multiple bonds or azide groups, in particular, in aglycone, which is extremely important for the preparation of neoglycoconjugates both by converting the azide to an amine, followed by covalent binding to a carrier, and by conducting click-chemistry reactions using the 1,3-dipolar cycloaddition of azides to alkynes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. F. Paolo, J. D. Nosanchuk, Lancet Infect. Dis., 2004, 4, 287; DOI: https://doi.org/10.1016/s1473-3099(04)01004-7.

    Article  PubMed  Google Scholar 

  2. P. D. O. Davies, Ann. Med., 2009, 35, 235; DOI: https://doi.org/10.1080/07853890310005713.

    Article  Google Scholar 

  3. World Health Organization. Tuberculosis (TB); https://www.who.int/tb/en (accessed May 1, 2021).

  4. World Health Organization. Tuberculosis Fact Sheet;https://www.who.int/en/news-room/fact-sheets/detail/tuberculosis (accessed May 1, 2021).

  5. P.-H. Tam, T. L. Lowary, in Carbohydrate Chemistry, Eds A. P. Rauter and T. K. Lindhorst, The Royal Society of Chemistry, 2010, 38; DOI: https://doi.org/10.1039/9781849730891-00038.

  6. B. Hamasur, G. Ka, S. B. Svenson, Vaccine, 1999, 17, 2853.

    Article  CAS  PubMed  Google Scholar 

  7. R. B. Zheng, S. A. F. Jegouzo, M. Joe, Y. Bai, H. A. Tran, K. Shen, J. Saupe, L. Xia, M. F. Ahmed, Y. H. Liu, P. S. Patil, A. Tripathi, S. C. Hung, M. E. Taylor, T. L. Lowary, K. Drickamer, ACS Chem. Biol., 2017, 12, 2990; DOI: https://doi.org/10.1021/acschembio.7b00797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. G. L. Burygin, P. I. Abronina, N. M. Podvalnyy, S. A. Staroverov, L. O. Kononov, L. A. Dykman, Beilstein J. Nanotechnol., 2020, 11, 480; DOI: https://doi.org/10.3762/bjnano.11.39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. H.-S. Kim, E. S. M. Ng, R. B. Zheng, R. M. Whittal, D. C. Schriemer, T. L. Lowary, in Carbohydrate-Based Vaccines, Ed. R. Roy, American Chemical Society, 2008, 184.

  10. T. T. Chen, C. Blanc, Y. Y. Liu, E. Ishida, S. Singer, J. Y. Xu, M. Joe, E. R. Jenny-Avital, J. Chan, T. L. Lowary, J. M. Achkar, J. Clin. Invest., 2020, 130, 1808; DOI: https://doi.org/10.1172/jci128459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Z. H. Li, T. Bavaro, S. Tengattini, R. Bernardini, M. Mattei, F. Annunziata, R. B. Cole, C. P. Zheng, M. Sollogoub, L. Tamborini, M. Terreni, Y. M. Zhang, Eur. J. Med. Chem., 2020, 204, 112578; DOI: https://doi.org/10.1016/j.ejmech.2020.112578.

    Article  CAS  PubMed  Google Scholar 

  12. Y. Chu, J. S. Yang, Carbohydr. Res., 2018, 465, 10; DOI: https://doi.org/10.1016/j.carres.2018.05.009.

    Article  CAS  PubMed  Google Scholar 

  13. L. Wang, S. Feng, S. Wang, H. Li, Z. Guo, G. Gu, J. Org. Chem., 2017, 82, 12085; DOI: https://doi.org/10.1021/acs.joc.7b01817.

    Article  CAS  PubMed  Google Scholar 

  14. J. Gao, G. Liao, L. Wang, Z. Guo, Org. Lett., 2014, 16, 988; DOI: https://doi.org/10.1021/ol4036903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. R. J. Coker, Trop. Med. Int. Health, 2004, 9, 25; DOI: https://doi.org/10.1046/j.1365-3156.2003.01156.x.

    Article  PubMed  Google Scholar 

  16. M. Tong, C. E. Jacobi, F. M. van de Rijke, S. Kujiper, S. van de Werken, T. L. Lowary, C. H. Hokke, B. J. Appelmelk, N. J. D. Nagelkerke, H. J. Tanke, R. P. M. van Gijlswijk, J. Veuskens, A. H. J. Kolk, A. K. Raap, J. Immunol. Methods, 2005, 301, 154; DOI: https://doi.org/10.1016/j.jim.2005.04.004.

    Article  CAS  PubMed  Google Scholar 

  17. P. I. Abronina, N. M. Podvalnyy, T. M. Mel’nikova, A. I. Zinin, K. G. Fedina, V. V. Kachala, V. I. Torgov, L. O. Kononov, E. A. Panfertsev, E. V. Baranova, V. V. Mochalov, V. I. Dyatlova, S. F. Biketov, Russ. Chem. Bull., 2010, 59, 2333; DOI: https://doi.org/10.1007/s11172-010-0397-4.

    Article  CAS  Google Scholar 

  18. A. G. Korolyova-Ushakova, E. V. Baranova, S. G. Ignatov, P. V. Soloviev, N. N. Kondakov, T. M. Mel’nikova, P. I. Abronina, N. M. Podval’nyi, L. O. Kononov, S. F. Biketov, Appl. Biochem. Microbiol., 2019, 55, 696; DOI: https://doi.org/10.1134/S0003683819060097.

    Article  CAS  Google Scholar 

  19. H. B. Mereyala, S. Hotha, M. K. Gurjar, Chem Commun., 1998, 685; DOI: https://doi.org/10.1039/a707796c.

  20. A. Ishiwata, H. Akao, Y. Ito, Org. Lett., 2006, 8, 5525; DOI: https://doi.org/10.1021/ol062198j.

    Article  CAS  PubMed  Google Scholar 

  21. M. Joe, Y. Bai, R. C. Nacario, T. L. Lowary, J. Am. Chem. Soc., 2007, 129, 9885; DOI: https://doi.org/10.1021/ja072892+.

    Article  CAS  PubMed  Google Scholar 

  22. K. Sahloul, T. L. Lowary, J. Org. Chem., 2015, 80, 11417; DOI: https://doi.org/10.1021/acs.joc.5b02083.

    Article  CAS  PubMed  Google Scholar 

  23. M. Islam, G. Gayatri, S. Hotha, J. Org. Chem., 2015, 80, 7937; DOI: https://doi.org/10.1021/acs.joc.5600964.

    Article  CAS  PubMed  Google Scholar 

  24. T. L. Lowary, Acc. Chem. Res., 2016, 49, 1379; DOI: https://doi.org/10.1021/acs.accounts.6b00164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. B. Mishra, S. Manmode, R. R. A. Panda, S. Hotha, Eur. J. Org. Chem., 2017, 2017, 4794; DOI: https://doi.org/10.1002/ejoc.201700712.

    Article  CAS  Google Scholar 

  26. Y. Wu, D. C. Xiong, S. C. Chen, Y. S. Wang, X. S. Ye, Nat. Commun., 2017, 8, 14851, DOI: https://doi.org/10.1038/ncomms14851; DOI: https://doi.org/10.1038/ncomms14851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. H. Z. Li, J. Ding, C. R. Cheng, Y. Chen, X. Y. Liang, Carbohydr. Res., 2018, 460, 1; DOI: https://doi.org/10.1016/j.carres.2018.02.006.

    Article  CAS  PubMed  Google Scholar 

  28. A. Pardo-Vargas, P. Bharate, M. Delbianco, P. H. Seeberger, Beilstein J. Org. Chem., 2019, 15, 2936; DOI: https://doi.org/10.3762/bjoc.15.288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. L. Han, L. Wang, Z. Guo, J. Carbohydr. Chem., 2019, 38, 335; DOI: https://doi.org/10.1080/07328303.2019.1630840.

    Article  CAS  Google Scholar 

  30. K. Liu, L. Wang, Z. Guo, J. Carbohydr. Chem., 2019, 38, 414; DOI: https://doi.org/10.1080/07328303.2019.1630841.

    Article  CAS  Google Scholar 

  31. A. Hölemann, B. L. Stocker, P. H. Seeberger, J. Org. Chem., 2006, 71, 8071; DOI: https://doi.org/10.1021/jo061233x.

    Article  PubMed  Google Scholar 

  32. B. Fraser-Reid, J. Lu, K. N. Jayaprakash, J. C. López, Tetrahedron Asymmetry, 2006, 17, 2449; DOI: https://doi.org/10.1016/j.tetasy.2006.09.008.

    Article  CAS  Google Scholar 

  33. A. Ishiwata, Y. Ito, J. Am. Chem. Soc., 2011, 133, 2275; DOI: https://doi.org/10.1021/ja109932t.

    Article  CAS  PubMed  Google Scholar 

  34. V. Behar, S. J. Danishefsky, Angew. Chem., Int. Ed. Engl., 1994, 33, 1468; DOI: https://doi.org/10.1002/anie.199414681.

    Article  Google Scholar 

  35. J. T. Randolph, S. J. Danishefsky, Angew. Chem., Int. Ed. Engl., 1994, 33, 1470; DOI: https://doi.org/10.1002/anie.199414701.

    Article  Google Scholar 

  36. T. Ziegler, in Carbohydrate chemistry, Ed. G.-J. Boons, Blackie Academic & Professional, London—New York, 1998, 21.

  37. J. Lawandi, S. Rocheleau, N. Moitessier, Tetrahedron, 2016, 72, 6283; DOI: https://doi.org/10.1016/j.tet.2016.08.019.

    Article  CAS  Google Scholar 

  38. M. Bols, C. M. Pedersen, Beilstein J. Org. Chem., 2017, 13, 93; DOI: https://doi.org/10.3762/bjoc.13.12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. V. Dimakos, M. S. Taylor, Chem. Rev., 2018, 118, 11457; DOI: https://doi.org/10.1021/acs.chemrev.8b00442.

    Article  CAS  PubMed  Google Scholar 

  40. Protective groups: Strategies and Applications in Carbohydrate Chemistry, Ed. S. Vidal, Wiley—VCH Verlag GmbH & Co. KGaA, Weinheim, 2019, 528 pp.

    Google Scholar 

  41. E. J. Corey, A. Venkateswarlu, J. Am. Chem. Soc., 1972, 94, 6190; DOI: https://doi.org/10.1021/ja00772a043.

    Article  CAS  Google Scholar 

  42. S. Hanessian, P. Lavallee, Can. J. Chem. Rev. Can. Chim., 1975, 53, 2975; DOI: https://doi.org/10.1139/v75-419.

    Article  CAS  Google Scholar 

  43. L. H. Sommer, Stereochemistry, Mechanism and Silicon; an Introduction to the Dynamic Stereochemistry and Reaction Mechanisms of Silicon Centers, McGraw-Hill, New York, 1965, 189 pp.

    Google Scholar 

  44. K. K. Ogilvie, K. L. Sadana, E. A. Thompson, M. A. Quilliam, J. B. Westmore, Tetrahedron Lett., 1974, 15, 2861; DOI: https://doi.org/10.1016/S0040-4039(01)91763-0.

    Article  Google Scholar 

  45. C. Ruecker, Chem. Rev., 1995, 95, 1009; DOI: https://doi.org/10.1021/cr00036a006.

    Article  CAS  Google Scholar 

  46. O. Dahlman, P. J. Garegg, H. Mayer, S. Schramek, Acta Chem. Scand. B, 1986, 40, 15; DOI: https://doi.org/10.3891/acta.chem.scand.40b-0015.

    Article  CAS  PubMed  Google Scholar 

  47. A. K. Pathak, V. Pathak, N. Bansal, J. A. Maddry, R. C. Reynolds, Tetrahedron Lett., 2001, 42, 979; DOI: https://doi.org/10.1016/s0040-4039(00)02161-4.

    Article  CAS  Google Scholar 

  48. H. Yin, F. W. D’Souza, T. L. Lowary, J. Org. Chem., 2002, 67, 892; DOI: https://doi.org/10.1021/jo010910e.

    Article  CAS  PubMed  Google Scholar 

  49. F. W. D’Souza, J. D. Ayers, P. R. McCarren, T. L. Lowary, J. Am. Chem. Soc., 2000, 122, 1251; DOI: https://doi.org/10.1021/ja9935431.

    Article  Google Scholar 

  50. S. K. Chaudhary, O. Hernandez, Tetrahedron Lett., 1979, 20, 99; DOI: https://doi.org/10.1016/S0040-4039(01)85893-7.

    Article  Google Scholar 

  51. X. M. Zhu, S. Kawatkar, Y. Rao, G. J. Boons, J. Am. Chem. Soc., 2006, 128, 11948; DOI: https://doi.org/10.1021/ja0629817.

    Article  CAS  PubMed  Google Scholar 

  52. T. Ziegler, E. Eckhardt, G. Pantkowski, J. Carbohydr. Chem., 1994, 13, 81; DOI: https://doi.org/10.1080/07328309408009180.

    Article  CAS  Google Scholar 

  53. D. Crich, C. M. Pedersen, A. A. Bowers, D. J. Wink, J. Org. Chem., 2007, 72, 1553; DOI: https://doi.org/10.1021/jo061440x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. P. O. Adero, H. Amarasekara, P. Wen, L. Bohe, D. Crich, Chem. Rev., 2018, 118, 8242; DOI: https://doi.org/10.1021/acs.chemrev.8b00083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. P. I. Abronina, N. M. Podvalnyy, S. L. Sedinkin, K. G. Fedina, A. I. Zinin, A. O. Chizhov, V. I. Torgov, L. O. Kononov, Synthesis, 2012, 44, 1219; DOI: https://doi.org/10.1055/s-0031-1290752.

    Article  CAS  Google Scholar 

  56. P. Deslongchamps, Stereoelectronic Effects in Organic Chemistry, 1st ed., Pergamon Press, Oxford Oxfordshire—New York, 1983, 375 pp.

    Google Scholar 

  57. A. J. Kirby, The Anomeric Effect and Related Stereoelectronic Effects at Oxygen, Springer—Verlag, Berlin—New York, 1983, 149 pp.

    Book  Google Scholar 

  58. A. J. Kirby, Stereoelectronic Effects, Oxford University Press, Oxford—New York, 1996, 89 pp.

    Google Scholar 

  59. E. Juaristi, G. Cuevas, The Anomeric Effect, CRC Press, Boca Raton, 1995, 229 pp.

    Google Scholar 

  60. U. Ellervik, G. Magnusson, J. Am. Chem. Soc., 1994, 116, 2340; DOI: https://doi.org/10.1021/ja00085a013.

    Article  CAS  Google Scholar 

  61. J. B. Houseknecht, T. L. Lowary, C. M. Hadad, J. Phys. Chem. A, 2003, 107, 5763; DOI: https://doi.org/10.1021/jp027716w.

    Article  CAS  Google Scholar 

  62. R. U. Lemieux, K. B. Hendriks, R. V. Stick, K. James, J. Am. Chem. Soc., 1975, 97, 4056; DOI: https://doi.org/10.1021/ja00847a032.

    Article  CAS  Google Scholar 

  63. T. L. Lowary, Curr. Opin. Chem. Biol., 2003, 7, 749; DOI: https://doi.org/10.1016/j.cbpa.2003.10.005.

    Article  CAS  PubMed  Google Scholar 

  64. C. H. Larsen, B. H. Ridgway, J. T. Shaw, D. M. Smith, K. A. Woerpel, J. Am. Chem. Soc., 2005, 127, 10879; DOI: https://doi.org/10.1021/ja0524043.

    Article  CAS  PubMed  Google Scholar 

  65. M. G. Beaver, T. M. Buscagan, O. Lavinda, K. A. Woerpel, Angew. Chem., Int. Ed., 2016, 55, 1816; DOI: https://doi.org/10.1002/anie.201507806.

    Article  CAS  Google Scholar 

  66. Y. Rao, G. J. Boons, Angew. Chem., Int. Ed., 2007, 46, 6148; DOI: https://doi.org/10.1002/anie.200701750.

    Article  CAS  Google Scholar 

  67. J. D. C. Codée, L. J. Van Den Bos, R. E. J. N. Litjens, H. S. Overkleeft, C. A. A. Van Boeckel, J. H. Van Boom, G. A. Van Der Marel, Tetrahedron, 2004, 60, 1057; DOI: https://doi.org/10.1016/j.tet.2003.11.084.

    Article  Google Scholar 

  68. B. Fraser-Reid, J. C. Lopez, Top. Curr. Chem., 2011, 301, 1; DOI: https://doi.org/10.1007/128_2010_105.

    CAS  PubMed  Google Scholar 

  69. H. D. Premathilake, A. V. Demchenko, Top. Curr. Chem., 2011, 301, 189; DOI: https://doi.org/10.1007/128_2010_106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. X. Y. Liang, H. C. Bin, J. S. Yang, Org. Lett., 2013, 15, 2834; DOI: https://doi.org/10.1021/ol401166x.

    Article  CAS  PubMed  Google Scholar 

  71. S. Wang, X. Meng, W. Huang, J.-S. Yang, J. Org. Chem., 2014, 79, 10203; DOI: https://doi.org/10.1021/jo5018684.

    Article  CAS  PubMed  Google Scholar 

  72. A. Imamura, Trends Glycosci. Glycotechnol., 2014, 26, 141; DOI: https://doi.org/10.4052/tigg.26.141.

    Article  CAS  Google Scholar 

  73. P. I. Abronina, K. G. Fedina, N. M. Podvalnyy, A. I. Zinin, A. O. Chizhov, N. N. Kondakov, V. I. Torgov, L. O. Kononov, Carbohydr. Res., 2014, 396, 25; DOI: https://doi.org/10.1016/j.carres.2014.05.017.

    Article  CAS  PubMed  Google Scholar 

  74. K. G. Fedina, P. I. Abronina, N. M. Podvalnyy, N. N. Kondakov, A. O. Chizhov, V. I. Torgov, L. O. Kononov, Carbohydr. Res., 2012, 357, 62; DOI: https://doi.org/10.1016/j.carres.2012.05.021.

    Article  CAS  PubMed  Google Scholar 

  75. P. I. Abronina, S. L. Sedinkin, N. M. Podvalnyy, K. G. Fedina, A. I. Zinin, V. I. Torgov, L. O. Kononov, Tetrahedron Lett., 2011, 52, 1794; DOI: https://doi.org/10.1016/j.tetlet.2011.02.019.

    Article  CAS  Google Scholar 

  76. A. Imamura, T. L. Lowary, Org. Lett., 2010, 12, 3686; DOI: https://doi.org/10.1021/ol101520q.

    Article  CAS  PubMed  Google Scholar 

  77. N. M. Podvalnyy, P. I. Abronina, K. G. Fedina, N. N. Kondakov, A. I. Zinin, A. O. Chizhov, V. I. Torgov, V. V. Kachala, L. O. Kononov, Russ. Chem. Bull., 2015, 64, 1149; DOI: https://doi.org/10.1007/s11172-015-0992-5.

    Article  CAS  Google Scholar 

  78. V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless, Angew. Chem., Int. Ed., 2002, 41, 2596; DOI: https://doi.org/10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4.

    Article  CAS  Google Scholar 

  79. M. Meldal, C. W. Tornoe, Chem. Rev., 2008, 108, 2952; DOI: https://doi.org/10.1021/cr0783479.

    Article  CAS  PubMed  Google Scholar 

  80. V. K. Tiwari, B. B. Mishra, K. B. Mishra, N. Mishra, A. S. Singh, X. Chen, Chem. Rev., 2016, 116, 3086; DOI: https://doi.org/10.1021/acs.chemrev.5b00408.

    Article  CAS  PubMed  Google Scholar 

  81. X. P. He, Y. L. Zeng, Y. Zang, J. Li, R. A. Field, G. R. Chen, Carbohydr. Res., 2016, 429, 1; DOI: https://doi.org/10.1016/j.carres.2016.03.022.

    Article  CAS  PubMed  Google Scholar 

  82. V. Poonthiyil, T. K. Lindhorst, V. B. Golovko, A. J. Fairbanks, Beilstein J. Org. Chem., 2018, 14, 11; DOI: https://doi.org/10.3762/bjoc.14.2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. N. M. Podvalnyy, P. I. Abronina, E. L. Zdorovenko, A. O. Chizhov, A. I. Zinin, V. I. Torgov, L. O. Kononov, Russ. Chem. Bull., 2014, 63, 497; DOI: https://doi.org/10.1007/s11172-014-0459-0.

    Article  CAS  Google Scholar 

  84. P. I. Abronina, A. I. Zinin, N. N. Malysheva, E. V. Stepanova, A. O. Chizhov, V. I. Torgov, L. O. Kononov, Synlett, 2017, 28, 1608; DOI: https://doi.org/10.1055/s-0036-1589028.

    Article  CAS  Google Scholar 

  85. P. I. Abronina, A. I. Zinin, D. A. Romashin, V. V. Tereshina, A. O. Chizhov, L. O. Kononov, Carbohydr. Res., 2018, 464, 28; DOI: https://doi.org/10.1016/j.carres.2018.05.005.

    Article  CAS  PubMed  Google Scholar 

  86. U. Jost, P. I. Abronina, A. I. Zinin, D. Michalik, U. Kragl, N. N. Kondakov, A. O. Chizov, V. I. Torgov, L. O. Kononov, Russ. Chem. Bull., 2018, 67, 2297; DOI: https://doi.org/10.1007/s11172-018-2373-3.

    Article  CAS  Google Scholar 

  87. E. V. Stepanova, N. M. Podvalnyy, P. I. Abronina, L. O. Kononov, Synlett, 2018, 29, 2043; DOI: https://doi.org/10.1055/s-0037-1610648.

    Article  CAS  Google Scholar 

  88. N. N. Kondakov, M. V. Panova, P. I. Abronina, A. I. Zinin, A. M. Shpirt, L. O. Kononov, Russ. Chem. Bull., 2019, 68, 416; DOI: https://doi.org/10.1007/s11172-019-2402-x.

    Article  CAS  Google Scholar 

  89. P. Abronina, A. Zinin, A. Chizhov, L. Kononov, Eur. J. Org. Chem., 2020, 4146; DOI: https://doi.org/10.1002/ejoc.202000520.

  90. N. M. Podvalnyy, A. O. Chizhov, A. I. Zinin, L. O. Kononov, Carbohydr. Res., 2016, 431, 25; DOI: https://doi.org/10.1016/j.carres.2016.05.009.

    Article  CAS  PubMed  Google Scholar 

  91. S.-J. Hou, R. Saksena, P. Kováč, Carbohydr. Res., 2008, 343, 196; DOI: https://doi.org/10.1016/j.carres.2007.10.015.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. I. Abronina or L. O. Kononov.

Additional information

Dedicated to Academician of the Russian Academy of Sciences O. M. Nefedov on the occasion of his 90th birthday.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 6–29, January, 2022.

This work was financially supported by the Russian Science Foundation (Project No. 21-73-20164).

No human or animal subjects were used in this research.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abronina, P.I., Podvalnyy, N.M. & Kononov, L.O. The use of silyl groups in the synthesis of arabinofuranosides. Russ Chem Bull 71, 6–29 (2022). https://doi.org/10.1007/s11172-022-3371-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3371-z

Key words

Navigation