Skip to main content
Log in

Application of carbon materials in catalytic systems for the hydrogenation—dehydrogenation of liquid organic hydrogen carriers

  • Reviews
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Carbon materials with different textural characteristics (active carbon, carbon nanotubes, and Sibunite) for the purposes of hydrogen generation and storage and its evolution in processes using liquid organic hydrogen carriers are compared. A combination of structural and physicochemical characteristics (surface functionalization, controlled metal—carbon interaction, and relative chemical inertness) provides advantages of the modern carbon materials over oxides as catalyst carriers, since they allow the accumulation (hydrogenation) and evolution (dehydrogenation) of hydrogen to occur without cracking product formation. The prospects of the Sibunite-based Pt catalysts in these reactions are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Z. Xu, N. Zhao, S. Hillmansen, C. Roberts, Y. Yan, Energies, 2022, 15, 6467; DOI: https://doi.org/10.3390/en15176467.

    Article  CAS  Google Scholar 

  2. Y. Balali, S. Stegen, Sustain Energy Rev., 2021, 135, 110185; DOI: https://doi.org/10.1016/j.rser.2020.110185.

    Article  Google Scholar 

  3. M. K. Singla, P. Nijhawan, A. S. Oberoi, Environ. Sci. Pollut. Res., 2021, 28, 15607; DOI: https://doi.org/10.1007/s11356-020-12231-8.

    Article  CAS  Google Scholar 

  4. E. Mohammad-pajooh, A. E. Turcios, G. Cuf, D. Weichgrebe, K. H. Rosenwinkela, M. D. Vedenyapina, L. R. Sharifullina, J. Environ. Manag., 2018, 228, 189; DOI: https://doi.org/10.1016/j.jenvman.2018.09.020.

    Article  CAS  Google Scholar 

  5. V. K. Gupta, B. Gupta, A. Rastogi, S. Aragwal, A. Nayak, Water Res., 2011, 45, 4047; DOI: https://doi.org/10.1016/j.waters.2011.05.016.

    Article  CAS  PubMed  Google Scholar 

  6. M. Ahmaruzzaman, Energy Fuels, 2009, 23, 1494; DOI: https://doi.org/10.1021/ef8002697.

    Article  CAS  Google Scholar 

  7. C. De Smedt, F. Ferrer, K. Leus, P. Spanoghe, Adsorpt. Sci. Technol., 2015, 33, 457; DOI: https://doi.org/10.1260/0263-6174.33.5.457.

    Article  CAS  Google Scholar 

  8. A. S. Barreto, A. Aquino, S. C. S. Silva, M. E. de Mesquita, M. J. Calhorda, M. S. Saraiva, S. Navickiene, Mater. Lett., 2011, 65, 1357; DOI: https://doi.org/10.1016/j.matlet.2011.01.082.

    Article  CAS  Google Scholar 

  9. V. I. Isaeva, S. A. Kulaishin, M. D. Vedenyapina, V. V. Chernyshev, G. I. Kapustin, V. V. Vergun, L. M. Kustov, Russ. Chem. Bull., 2021, 70, 67; DOI: https://doi.org/10.1007/s11172-021-3058-x.

    Article  CAS  Google Scholar 

  10. L. M. Martinez-Prieto, I. Cano, P. W. van Leeuwen, Top. Organomet. Chem., 2021, 69, 397; DOI: https://doi.org/10.1007/3418_2020_60.

    CAS  Google Scholar 

  11. S. Kundu, H. Liang, J. Coll. Int. Sci., 2011, 354, 597; DOI: https://doi.org/10.1016/j.jcis.2010.11.032.

    Article  ADS  CAS  Google Scholar 

  12. A. Goel, N. Rani, Open J. Inorg. Chem., 2012, 2, 67; DOI: https://doi.org/10.4236/ojic.2012.23010.

    Article  Google Scholar 

  13. R. Zhang, X. Liu, L. Shi, X. Jin, Y. Dong, K. Li, X. Zhao, Q. Li, Y. Deng, Nanomaterials, 2019, 9, 76; DOI: https://doi.org/10.3390/nano9010076.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  14. H. Pu, H. Dai, T. Zhang, K. Dong, Y. Wang, Y. Deng, Current Opinion in Electrochem., 2022, 22, 100927; DOI: https://doi.org/10.1016/j.colec.2021.100927.

    Article  Google Scholar 

  15. S. V. Saikova, T. V. Trofimova, A. Yu. Pavlikov, D. V. Karpov, D. I. Chistyakov, Yu. I. Mikhlin, Russ. Chem. Bull., 2020, 69, 1284; DOI: https://doi.org/10.1007/s11172-020-2899-z.

    Article  CAS  Google Scholar 

  16. K. V. Mkrtchyan, A. A. Zezin, E. A. Zezina, S. S. Abramchuk, I. A. Baranova, Russ. Chem. Bull., 2020, 69, 1731; DOI: https://doi.org/10.1007/s11172-020-2956-7.

    Article  CAS  Google Scholar 

  17. M. Rueping, R. M. Roenigs, R. Borrmann, J. Zoller, T. E. Weirich, J. Mayer, Chem. Mater., 2011, 23, 2008; DOI: https://doi.org/10.1021/cm10325578.

    Article  CAS  Google Scholar 

  18. R. V. Borisov, O. V. Belousov, M. N. Likhatski, A. M. Zhizhaev, S. D. Kirik, Russ. Chem. Bull., 2022, 71, 1164; DOI: https://doi.org/10.1007/s11172-022-3517-z.

    Article  CAS  Google Scholar 

  19. O. V. Belousov, V. E. Tarabanko, R. V. Borisov, I. L. Simakova, A. M. Zhyzhaev, N. Tarabanko, V. G. Isakova, V. Parfenov, I. V. Ponomarenko, React. Kinet. Mech. Catal., 2019, 127, 25; DOI: https://doi.org/10.1007/s11144-018-1430-0.

    Article  CAS  Google Scholar 

  20. R. V. Borisov, O. V. Belousov, A. M. Zhizhaev, Russ. J. Inorg. Chem., 2020, 65, 1623; DOI: https://doi.org/10.1134/S0036023620100034.

    Article  CAS  Google Scholar 

  21. R. V. Borisov, O. V. Belousov, A. M. Zhizhaev, M. N. Likhatski, N. V. Belousova, Russ. Chem. Bull., 2021, 70, 1474; DOI: https://doi.org/10.1007/s11172-021-3242-z.

    Article  CAS  Google Scholar 

  22. E. N. Tupikova, I. A. Platonov, D. S. Khabarova, Kinet. Catal., 2019, 60, 366; DOI: https://doi.org/10.1134/S0023158419030145.

    Article  CAS  Google Scholar 

  23. E. V. Fesik, T. M. Buslaeva, T. I. Melnikova, L. S. Tarasova, A. V. Laptenkova, Russ. J. Phys. Chem., A, 2019, 93, 1011; DOI: https://doi.org/10.1134/S0036024419060098.

    Article  CAS  Google Scholar 

  24. P. Veerakumar, P. Thanasekaran, Th. Subburaj, K.-Ch. Lin, J. Carbon Research, 2018, 4, 54; DOI: https://doi.org/10.3390/c4040054.

    Article  CAS  Google Scholar 

  25. D. S. Su, S. Perathoner, G. Centi, Chem. Rev., 2013, 113, 5782; DOI: https://doi.org/10.1021/cr300367d.

    Article  CAS  PubMed  Google Scholar 

  26. X. Duan, H. Sun, S. Wang, Acc. Chem. Res., 2018, 51, 678; DOI: https://doi.org/10.1021/acs.accounts.7b00535.

    Article  CAS  PubMed  Google Scholar 

  27. C. Su, K. P. Loh, Acc. Chem. Res., 2013, 46, 2275; DOI: https://doi.org/10.1021/cr300367d.

    Article  CAS  PubMed  Google Scholar 

  28. B. F. Machado, P. Serp, Catal. Sci. Technol., 2012, 2, 54; DOI: https://doi.org/10.1039/C1CY00361E.

    Article  CAS  Google Scholar 

  29. M. Adamska, U. Narkiewicz, J. Fluorine Chem., 2017, 200, 179; DOI: https://doi.org/10.1016/j.jfluchem.2017.06.018.

    Article  CAS  Google Scholar 

  30. E. S. Kobeleva, D. A. Nevostruev, M. N. Uvarov, D. E. Utkin, V. A. Zinoviev, O. A. Gurova, M. S. Kazantzev, K. M. Degtyarenko, A. V. Kulikova, L. V. Kulik, Russ. Chem. Bull., 2021, 70, 2427; DOI: https://doi.org/10.1007/s11172-021-3363-4.

    Article  CAS  Google Scholar 

  31. R. Liu, F. Li, C. Chen, Q. Song, N. Zhao, F. Xiao, Catal. Sci. Technol., 2017, 7, 1217; DOI: https://doi.org/10.1039/C7CY00058H.

    Article  CAS  Google Scholar 

  32. C. Moreno-Castilla, F. Carrasco-Marín, C. Parejo-Pérez, R. M. López, Carbon, 2001, 39, 869; DOI: https://doi.org/10.1016/S0008-6223(00)00192-5.

    Article  CAS  Google Scholar 

  33. H. Ahmad, M. Fana, D. Hui, Composites B, 2018, 145, 270; DOI: https://doi.org/10.1016/j.compositesb.2018.02.00612.

    Article  CAS  Google Scholar 

  34. A. Dhakshinamoorthy, J. He, A. Franconetti, A. M. Asiri, A. Primo, H. Garcia, Catal. Sci. Technol., 2018, 8, 1589; DOI: https://doi.org/10.1039/C7CY02404E.

    Article  CAS  Google Scholar 

  35. L. Favaretto, J. An, M. Sambo, A. De Nisi, C. Bettini, M. Melucci, A. Kovtun, A. Liscio, V. Palermo, A. Bottoni, F. Zerbetto, M. Calvaresi, M. Bandini, Org. Lett., 2018, 20, 3705; DOI: https://doi.org/10.1021/acs.orglett.8b01531.

    Article  CAS  PubMed  Google Scholar 

  36. D. R. Dreyer, K. A. Jarvis, P. J. Ferriera, C. W. Bielawski, Macromolecules, 2011, 44, 7659; DOI: https://doi.org/10.1021/ma201306x.

    Article  ADS  CAS  Google Scholar 

  37. A. Dhakshinamoorthy, M. Alvaro, P. Concepcion, V. Fornes, H. Garcia, Chem. Commun., 2012, 48, 5443; DOI: https://doi.org/10.1039/C2CC31385E.

    Article  CAS  Google Scholar 

  38. O. Mohammadi, M. Golestanzadeh, M. Abdouss, New J. Chem., 2017, 41, 11471; DOI: https://doi.org/10.1039/C7NJ02515G.

    Article  CAS  Google Scholar 

  39. H. S. Cho, J. Yang, X. Gong, Y.-B. Zhang, K. Momma, M. Weckhuysen, H. Deng, J. K. Kang, O. M Yaghi, O. Terasaki, Nat. Chem., 2019, 11, 562; DOI: https://doi.org/10.1038/s41557-019-0257-2.

    Article  CAS  PubMed  Google Scholar 

  40. M. R. Azhar, H. R. Abid, H. Sun, V. Peniasamy, M. O. Tade, S. Wang, J. Colloid Interface Sci., 2016, 478, 344; DOI: https://doi.org/10.1016/j.jcis.2016.06.032.

    Article  ADS  CAS  PubMed  Google Scholar 

  41. P. Ch. Rao, M. Yoon, Energies, 2020, 13, 6040; https://doi.org/10.3390/en13226040.

    Article  CAS  Google Scholar 

  42. Y. Sekine, T. Higo, Topics in Catalysis, 2021, 64, 470; DOI: https://doi.org/10.1007/s11244-021-01452-x.

    Article  CAS  Google Scholar 

  43. J. Y. Cho, H. Kim, J. E. O, B. Y. Park, Catalysts, 2021, 11, 1497; DOI: https://doi.org/10.3390/catal11121497

    Article  CAS  Google Scholar 

  44. E. S. Alekseev, A. Yu. Alentiev, A. S. Belova, V. I. Bogdan, T. V. Bogdan, A. V. Bystrova, Russ. Chem. Rev., 2020, 89, 1337; DOI: https://doi.org/10.1070/RCR4932.

    Article  ADS  CAS  Google Scholar 

  45. M. Yang, X. Lao, J. Sun, N. Ma, S. Wang, S. Wang, W. Ye, P. Guo, Langmuir, 2020, 36, 11094; DOI: https://doi.org/10.1021/acs.langmuir.0c02102.

    Article  CAS  PubMed  Google Scholar 

  46. J. J. Musci, A. B. Merlo, M. L. Casella, Catal. Today, 2017, 296, 43; DOI: https://doi.org/10.1016/j.cattod.2017.04.063.

    Article  CAS  Google Scholar 

  47. R. Chowdhury, M. M. R. Mollick, Y. Biswas, D. Chattopadhyay, M. H. Rashid, J. Alloys Compd., 2018, 763, 399; DOI: https://doi.org/10.1016/j.jallcom.2018.05.343.

    Article  CAS  Google Scholar 

  48. F. Sanchez, L. Bocelli, D. Motta, A. Villa, S. Albonetti, N. Dimitratos, Appl. Sci., 2020, 10, 1752; DOI: https://doi.org/10.3390/app10051752.

    Article  CAS  Google Scholar 

  49. F. Besenbacher, I. Chorkendorff, B. S. Clausen, B. Hammer, A. M. Molenbroek, J. K. Norskov, I. Stensgaard, Science, 1998, 279, 1913; DOI: https://doi.org/10.1126/science.279.5358.1913.

    Article  ADS  CAS  PubMed  Google Scholar 

  50. B. C. Enger, R. Lodeng, A. Holmen, Appl. Catal. A, 2008, 346, 1; DOI: https://doi.org/10.1016/j.apcata.2008.05.018.

    Article  CAS  Google Scholar 

  51. S. Ayabe, H. Omoto, T. Utaka, R. Kikuchi, K. Sasaki, Y. Teraoka, K. Eguchi, Appl. Catal. A, 2003, 241, 261; DOI: https://doi.org/10.1016/S0926-860X(02)00471-4.

    Article  CAS  Google Scholar 

  52. I. A. Makaryan, I. V. Sedov, A. V. Nikitin, V. S. Arutyunov, Sci. J. Russ. Gas Soc., 2020, 1, 50.

    Google Scholar 

  53. S. Timmerberga, M. Kaltschmitt, M. Finkbeiner, Energy Conversion and Management:X, 2020, 7, 100043; DOI: https://doi.org/10.1016/j.ecmx.2020.100043.

    Article  Google Scholar 

  54. R. Vander Wal, M. M. Nkiawete, J. Carbon Research, 2020, 6, 23; DOI: https://doi.org/10.3390/c6020023.

    Article  CAS  Google Scholar 

  55. H. F. Abbas, W. M. A. Wan Daud, Int. J. Hydrogen Energy, 2010, 35, 1160; DOI: https://doi.org/10.1016/j.ijhydene.2009.11.036.

    Article  CAS  Google Scholar 

  56. D. Ping, Ch. Wang, X. Dong, Y. Dong, Appl. Surf. Sci., 2016, 369, 299; DOI: https://doi.org/10.1016/j.apsusc.2016.02.074.

    Article  ADS  CAS  Google Scholar 

  57. M. Pudukudy, Z. Yaakob, Z. Sh. Akmal, Appl. Surface Sci., 2015, 330, 418; DOI: https://doi.org/10.1016/j.apsusc.2015.01.032.

    Article  ADS  CAS  Google Scholar 

  58. L. Zhou, L. R. Enakonda, M. Harb, Y. Saih, A. Aguilar-Tapia, S. Ould-Chikh, J-L. Hazemann, J. Li, N. Wei, D. Gary, P. Del-Gallo, J-M. Basset, Appl. Catal. B, 2017, 208, 44; DOI: https://doi.org/10.1016/j.apcatb.2017.02.052.

    Article  CAS  Google Scholar 

  59. D. Torres, J. L. Pinilla, I. Suelves, Appl. Catal. A, 2018, 559, 10; DOI: https://doi.org/10.1016/j.apcata.2018.04.011.

    Article  CAS  Google Scholar 

  60. N. Muradov, Int. J. Hydrogen Energy, 2001, 26, 1165; DOI: https://doi.org/10.1016/S0360-3199(01)00073-8.

    Article  CAS  Google Scholar 

  61. N. Muradov, F. Smith, A. T-Raissi, Catal. Today, 2012, 102—103, 225; DOI: https://doi.org/10.1016/j.cattod.2005.02.018.

    Google Scholar 

  62. H. Nishii, D. Miyamoto, Y. Umeda, H. Hamaguchi, M. Suzuki, T. Tanimoto, T. Harigai, H. Takikawa, S. Yoshiyuki, Appl. Surf. Sci., 2019, 473, 291; DOI: https://doi.org/10.1016/j.apsusc.2018.12.073.

    Article  ADS  CAS  Google Scholar 

  63. Y. Shen, A. C. Lua, J. Coll. Interf. Sci., 2016, 462, 48; DOI: https://doi.org/10.1016/j.jcis.2015.09.050.

    Article  ADS  CAS  Google Scholar 

  64. M. Mahmoudi, J. Dentzer, R. Gadiou, A. Ouederni, Int. J. Hydrogen Energy, 2017, 42, 8712; DOI: https://doi.org/10.1016/j.ijhydene.2016.11.177.

    Article  CAS  Google Scholar 

  65. J. Zhang, X. Li, H. Chen, M. Qi, G. Zhang, H. Haoquan, X. Ma, Int. J. Hydrogen Energy, 2017, 42, 19755; DOI: https://doi.org/10.1016/j.jjhydene.2017.06.197.

    Article  CAS  Google Scholar 

  66. G. D. Wen, J. Y. Diao, S. C. Wu, W. M. Yang, R. Schlögl, D. S. Su, ACS Catal., 2015, 5, 3600; DOI: https://doi.org/10.1021/acscatal.5b00307.

    Article  CAS  Google Scholar 

  67. E. Lam, J. H. T. Luong, ACS Catal., 2014, 4, 3393.

    Article  CAS  Google Scholar 

  68. A. P. Karnaukhov, Adsorbtsiya. Tekstura dispersnykh i poristykh materialov [Adsorption. Texture of Disperse and Porous Materials], Nauka, Novosibirsk, 1999, 469 pp. (in Russian); ISNB 5-02-031529-X.

    Google Scholar 

  69. F. Rodriguez-Reinoso, Carbon, 1998, 36, 159; DOI: https://doi.org/10.1016/s0008-6223(97)00173-5

    Article  CAS  Google Scholar 

  70. V. F. Surovikin, Y. V. Surovikin, M. S. Tsekhanovich, Russ. J. Gen. Chem., 2007, 77, 2301; DOI: https://doi.org/10.1134/S1070363207120353.

    Article  CAS  Google Scholar 

  71. E. V. Suslova, A. P. Kozlov, S. A. Chernyak, S. V. Savilov, Russ. Chem. Bull., 2023, 72, 345; DOI: https://doi.org/10.1007/s11172-023-3804-4.

    Article  CAS  Google Scholar 

  72. E. Suslova, S. Savilov, A. Egorov, A. Shumyantsev, V. Lunin, Micropor. Mesopor. Mater., 2020, 293, 109807; DOI: https://doi.org/10.1016/j.micromeso.2019.109807.

    Article  CAS  Google Scholar 

  73. G. Yamamoto, Y. Sato, T. Takahashi, M. Omori, T. Hashida, A. Okubo, K. Tohji, J. Mater. Res., 2006, 21, 1537; DOI: https://doi.org/10.1557/jmr.2006.0186.

    Article  ADS  CAS  Google Scholar 

  74. C. Laurent, T. M. Dinh, M. C. Barthelemy, G. Chevallier, A. Weibel, J. Mater. Sci., 2018, 53, 3225; DOI: https://doi.org/10.1007/s10853-017-1784-0.

    Article  ADS  CAS  Google Scholar 

  75. M. Marella, M. Tomaselli, Carbon, 2006, 44, 1404; https://doi.org/10.1016/J.CARBON.2005.11.020.

    Article  CAS  Google Scholar 

  76. J. W. Patrick, A. Arenillas, W. Shi, C. E. Snape, Carbon, 2006, 44, 1376; https://doi.org/10.1016/J.CARBON.2005.11.015.

    Article  Google Scholar 

  77. T. Heine, L. Zechkov, G. Seifert, Phys. Chem. Chem. Phys., 2004, 6, 980; https://doi.org/10.1039/B316209E.

    Article  CAS  Google Scholar 

  78. M. Hirscher, M. Becher, J. Nanosci. Nanotech., 2003, 3, 3; https://doi.org/10.1166/JNN.2003.172.

    Article  CAS  Google Scholar 

  79. M. J. Hirsher, B. Panella, J. Alloys Compd., 2005, 404–406, 399; https://doi.org/10.1016/J.JALLCOM.2004.11.109.

    Article  Google Scholar 

  80. J. F. Figueiredo, M. F. R. Pereira, M. M. A. Freitas, J. J. M. Órfão, Carbon, 1999, 37, 1379; DOI: https://doi.org/10.1016/S0008-6223(98)00333-9.

    Article  CAS  Google Scholar 

  81. H. P. Boehm, Carbon, 1994, 32, 759; DOI: https://doi.org/10.1016/0008-6223(94)90031-0.

    Article  CAS  Google Scholar 

  82. L. C. A. Oliveira, C. N. Silva, M. I. Yoshida, R. M. Lago, Carbon, 2004, 42, 2279; DOI: https://doi.org/10.1016/j.carbon.2004.05.003.

    Article  CAS  Google Scholar 

  83. H-S. Jang, C. Y. Lee, J. W. Jeon, W. T. Jung, W. G. Hong, S. M. Lee, H. Kim, J. Mun, B. H. Kim, Energies, 2020, 13, 3893; DOI: https://doi.org/10.3390/en13153893.

    Article  CAS  Google Scholar 

  84. A. Rey, M. Faraldos, A. Bahamonde, J. A. Casas, J. A. Zazo, J. J. Rodriguez, Ind. Eng. Chem. Res., 2008, 47, 8166; DOI: https://doi.org/10.1021/ie800538t.

    Article  CAS  Google Scholar 

  85. J-H. Zhou, Z-J. Sui, J. Zhu, P. Li P, D. Chen, Y-C. Dai, W-K. Yuan, Carbon, 2007, 45, 785; DOI: https://doi.org/10.1016/j.carbon.2006.11.019.

    Article  CAS  Google Scholar 

  86. L. M. Kustov, A. N. Kalenchuk, V. I. Bogdan, Russ. Chem. Rev., 2020, 89, 897; DOI: 10/1070/RCR4940.

    Article  ADS  CAS  Google Scholar 

  87. P. Preuster, Ch. Papp, P. Wasserscheid, Acc. Chem. Res., 2017, 50, 74; DOI: https://doi.org/10.1021/acs.accounts.6b00474.

    Article  CAS  PubMed  Google Scholar 

  88. A. N. Kalenchuk, V. I. Bogdan, Kinet. Catal., 2022, 63, 440; DOI: https://doi.org/10.1134/S002315842204005X.

    Article  CAS  Google Scholar 

  89. I. A. Makaryan, I. V. Sedova, A. L. Maksimov, Russ. J. Appl. Chem., 2020, 93, 1815: DOI: https://doi.org/10.1134/S1070427220120034.

    Article  CAS  Google Scholar 

  90. A. N. Kalenchuk, N. A. Davchan, V. I. Bogdan, S. F. Dunaev, L. M. Kustov, Russ. Chem. Bull., 2018, 67, 28; DOI: https://doi.org/10.1007/s11172-018-2032-8.

    Article  CAS  Google Scholar 

  91. H. Jorschick, A. Bösmann, P. Preuster, P. Wasserscheid, ChemCatChem., 2018, 10, 4329; DOI: https://doi.org/10.1002/cctc.201800960.

    Article  CAS  Google Scholar 

  92. S. Lee, J. Lee, T. Kim, G. Han, J. Lee, K. Lee, J. Bae, Int. J. Hydrogen Energy, 2021, 46, 5520; DOI: https://doi.org/10.1016/j.jjhydene.2020.11.038.

    Article  CAS  Google Scholar 

  93. L. Shi, Y. Zhou, S. Qi, K. J. Smith, X. Tan, J. Yan, C. Yi, ACS Catal., 2020, 10(18), 10661; DOI: https://doi.org/10.1021/acscatal.0c03091.

    Article  CAS  Google Scholar 

  94. P. T. Aakko-Saksa, M. Vehkamäki, M. Kemell, L. Keskiväli, P. Simell, M. Reinikainen, U. Tapper, T. Repo, Chem. Commun., 2020, 56, 1657; DOI: https://doi.org/10.1039/c9cc09715e.

    Article  CAS  Google Scholar 

  95. A. N. Kalenchuk, V. I. Bogdan, Catalysis in Industry, 2023, 15, 165; DOI: https://doi.org/10.1134/S2070050423020083.

    Article  Google Scholar 

  96. M. Geißelbrecht, S. Mrusek, K. Müller, P. Preuster, A. Bösmann, P. Wasserscheid, Energy Environ. Sci., 2020, 13, 3119; DOI: https://doi.org/10.1039/d0ee01155j.

    Article  Google Scholar 

  97. H. Jorschick, M. Geißelbrecht, M. Eßl, P. Preuster, A. Bösmann, P. Wasserscheid, Int. J. Hydrogen Energy, 2020, 5, 14897; DOI: https://doi.org/10.1016/j.jjhydene.2020.03.210.

    Article  Google Scholar 

  98. F. Auer, D. Blaumeiser, T. Bauer, A. Bösmann, N. Szesni, J. Libuda, P. Wasserscheid, Catal. Sci. Technol., 2019, 9, 3537; DOI: https://doi.org/10.1039/c9cy00817a.

    Article  CAS  Google Scholar 

  99. A. N. Kalenchuk, V. I. Bogdan, S. F. Dunaev, L. M. Kustov, Fuel, 2020, 280, 118625; DOI: https://doi.org/10.1016/j.fuel.2020.118625.

    Article  CAS  Google Scholar 

  100. A. N. Kalenchuk, V. I. Bogdan, S. F. Dunaev, L. M. Kustov, Fuel Proc. Tech., 2018, 169, 94; DOI: 10/1016/j.fuproc.2017.09.023.

    Article  CAS  Google Scholar 

  101. D. R. Lide, Handbook of Chemistry and Physics, 84th ed., CRC Press, Boca Raton, FL, 2003–2004, 2475 pp.

    Google Scholar 

  102. J. Li, J. L. Yang, Z. Y. Liu, Fuel Proc. Technol., 2009, 90, 490; DOI: https://doi.org/10.1016/j.fuproc.2009.01.013.

    Article  CAS  Google Scholar 

  103. Y. Liu, W. Zhou, C. Fan, R. Yin, Fuel, 2014, 122, 54; DOI: https://doi.org/10.1016/j.fuel.2014.01.004.

    Article  CAS  Google Scholar 

  104. X. Shan, G. Shu, K. Li, X. Zhang, H. Wang, X. Cao, J. Hongbo, W. Huixin, Fuel, 2017, 194, 291; DOI: https://doi.org/10.1016/j.fuel.2017.01.034.

    Article  CAS  Google Scholar 

  105. B. Pang, M. Z. Xie, M. Jia, Y. D. Liu, Energy Fuel, 2013, 27, 1699; DOI: https://doi.org/10.1021/ef400033f.

    Article  CAS  Google Scholar 

  106. Y. Z. An, S. P. Teng, Y. Q. Pei, J. Qin, X. Li, H. Zhao, Fuel, 2016, 164, 160; DOI: https://doi.org/10.1016/j.fuel.2015.10.007.

    Article  CAS  Google Scholar 

  107. S. Toppinen, T-K. Rantakyla, T. Salmi, J. Aittamaa, Ind. Eng. Chem. Res., 1996, 35, 1824; DOI: https://doi.org/10.1021/ie9504314.

    Article  CAS  Google Scholar 

  108. R. Atsumi, K. Kobayashi, C. Xieli, T. Nanba, H. Matsumoto, K. Matsuda, T. Tsujimura, Appl. Catal. A: Gen., 2020, 590, 117374; DOI: https://doi.org/10.1016/j.apcata.2019.117374.

    Article  CAS  Google Scholar 

  109. L. P. Lindfors, T. Salmi, S. Smeds, Chem. Eng. Sci., 1993, 32, 3813; DOI: https://doi.org/10.1016/0009-2509(93)80224-E.

    Article  Google Scholar 

  110. P. Castano, D. Van Herk, M. T. Kreutzer, J. A. Mouljjn, M. Makkee, Appl. Catal. B: Env, 2009, 88, 213; DOI: https://doi.org/10.1016/j.apcatb.2008.09.034.

    Article  CAS  Google Scholar 

  111. Z.-Q. Liu, X.-Y. Wei, F.-J. Liu, B.-J. Wang, Z.-M. Zong, Fuel, 2018, 223, 222; DOI: https://doi.org/10.1016/j.fuel.2018.03.014.

    Article  CAS  Google Scholar 

  112. L.-B. Sun, Z.-M. Zong, J.-H. Kou, G.-F. Liu, X. Sun, X.-Y. Wei, G.-J. Zhou, C. W. Lee, Energy Fuels, 2005, 19, 1; DOI: https://doi.org/10.1021/ef0497964.

    Article  Google Scholar 

  113. L.-B. Sun, X.-Y. Wei, X.-Q. Liu, Z.-M. Zong, W. Li, J.-H. Kou, Energy Fuels, 2009, 23, 4877; DOI: https://doi.org/10.1021/ef900398g.

    Article  CAS  Google Scholar 

  114. Z. G. Zhang, T. Yoshida, Energy Fuels, 2001, 15, 708; DOI: https://doi.org/10.1021/ef000253d.

    Article  CAS  Google Scholar 

  115. J. L. Pinilla, A. B. Garcia, K. Philippot, P. Lara, E. J. Garcia-Suarez, M. Millan, Fuel, 2014, 116, 729; DOI: https://doi.org/10.1016/j.fuel.2013.08.067.

    Article  CAS  Google Scholar 

  116. A. N. Kalenchuk, A. E. Koklin, V. I. Bogdan, L. M. Kustov, Russ. Chem. Bull., 2017, 66, 1208; DOI: https://doi.org/10.1007/s11172-017-1874-9.

    Article  CAS  Google Scholar 

  117. A. N. Kalenchuk, A. E. Koklin, V. I. Bogdan, L. M. Kustov, Russ. Chem. Bull., 2018, 67, 1406; DOI: https://doi.org/10.1007/s11172-018-2232-2.

    Article  CAS  Google Scholar 

  118. A. N. Kalenchuk, A. E. Koklin, V. I. Bogdan, V. V. Lunin, Russ. J. Phys. Chem. A, 2018, 92, 663; DOI: https://doi.org/10.1134/S0036024418040106.

    Article  CAS  Google Scholar 

  119. A. W. Weitkamp, Adv. Catal., 1968, 18, 1; DOI: https://doi.org/10.1016/S0360-0564(08)60428-9.

    Article  CAS  Google Scholar 

  120. L. M. Kustov, A. N. Kalenchuk, Metals, 2022, 12, 2002; DOI: https://doi.org/10.3390/met12122002.

    Article  CAS  Google Scholar 

  121. A. N. Kalenchuk, L. M. Kustov, Molecules, 2022, 27, 2236; DOI: https://doi.org/10.3390/molecules27072236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. F. Carrasco-Marín, A. Mueden, C. Moreno-Castilla, J. Phys. Chem. B, 1998, 102, 9239.

    Article  Google Scholar 

  123. G. C. Grunewald, R. S. Drago, J. Am. Chem. Soc., 1991, 113, 1636; DOI: https://doi.org/10.1021/ja00005a029.

    Article  CAS  Google Scholar 

  124. G. S. Szymanski, G. Rychlicki, A. P. Terzyk, Carbon, 1994, 32, 265; DOI: https://doi.org/10.1016/0008-6223(94)90189-9.

    Article  CAS  Google Scholar 

  125. J. Ob-eye, P. Praserthdam, B. Jongsomjit, Catalysts, 2019, 9, 66; DOI: https://doi.org/10.3390/catal9010066.

    Article  Google Scholar 

  126. A. N. Kalenchuk, V. I. Bogdan, L. M. Kustov, Catalysis in Industry, 2015, 7, 60; DOI: https://doi.org/10.1134/S2070050415010080.

    Article  Google Scholar 

  127. A. N. Kalenchuk, S. A. Chernyak, V. I. Bogdan, V. V. Lunin, Dokl. Phys. Chem., 2018, 482, 121; DOI: https://doi.org/10.1134/S0012501618090014.

    Article  CAS  Google Scholar 

  128. V. I. Bogdan, A. N. Kalenchuk, P. A. Chernavsky, T. V. Bogdan, I. I. Mishanin, L. M. Kustov, Int. J. Hydrogen Energy, 2021, 46, 1; DOI: https://doi.org/10.1016/j.jjhydene.2021.01.208.

    Article  Google Scholar 

  129. A. N. Kalenchuk, L. M. Kustov, Molecules, 2022, 27, 8416; DOI: https://doi.org/10.3390/molecules27238416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. L. M. Kustov, A. N. Kalenchuk, Catalysts, 2022, 12, 1506; DOI: https://doi.org/10.3390/catal12121506.

    Article  CAS  Google Scholar 

  131. A. N. Kalenchuk, V. I. Bogdan, S. F. Dunaev, L. M. Kustov, Int. J. Hydrogen Energy, 2018, 43, 6191; DOI: https://doi.org/10.1016/j.jjhydene.2018.01.121.

    Article  CAS  Google Scholar 

  132. M. Yu. Smirnov, E. I. Vovk, A. V. Kalinkin, P. A. Simonov, E. Yu. Gerasimov, V. I. Bukhtiyarov, Kinet. Catal., 2018, 59, 663; DOI: https://doi.org/10.1134/S0023158418050130.

    Article  CAS  Google Scholar 

  133. W. M. H. Sachtler, A. Yu. Stakheev, Catal. Today, 1992, 12, 283; DOI: https://doi.org/10.1016/0920-5861(92)85046-O.

    Article  CAS  Google Scholar 

  134. D. R. Jones, S. Iqbal, S. A. Kondrat, G. M. Lari, P. J. Miedziak, D. J. Morgan, S. F. Parker, G. J. Hutchings, Phys. Chem. Chem. Phys., 2016, 18, 17259; DOI: https://doi.org/10.1039/C6CP01311B.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was carried out in the framework of the state assignment of the N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences (FFZZ-2022-0005) and financially supported by the Russian Science Foundation (Project No. 23-73-30007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Kustov.

Ethics declarations

Animal Testing and Ethics

No human or animal subjects were used in this research.

Conflict of Interest

The authors declare no competing interests.

Additional information

Dedicated to Academician of the Russian Academy of Sciences M. P. Egorov on the occasion of his 70th birthday.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 73, No. 1, pp. 1–13, January, 2024.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalenchuk, A.N., Bogdan, V.I., Dunaev, S.F. et al. Application of carbon materials in catalytic systems for the hydrogenation—dehydrogenation of liquid organic hydrogen carriers. Russ Chem Bull 73, 1–13 (2024). https://doi.org/10.1007/s11172-024-4118-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-024-4118-9

Key words

Navigation