Skip to main content

Advertisement

Log in

Synthesis, intramolecular cyclization, and antinociceptive activity of 4-(het)aryl-2-{[4-(4-chlorophenyl)-3-(ethoxycarbonyl)thiophen-2-yl]amino}-4-oxobut-2-enoic acids

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Synthesis and intramolecular cyclization of the substituted 4-(het)aryl-2-{[4-(4-chlorophenyl)-3-(ethoxycarbonyl)thiophen-2-yl]amino}-4-oxobut-2-enoic acids were studied. It was found that the synthesized compounds underwent the intramolecular cyclization to give the substituted ethyl 4-(4-chlorophenyl)-2-{[2-oxofuran-3(2H)-ylidene]-amino}thiophene-3-carboxylates. Evaluation of the biological activity of the synthesized compounds showed that they have pronounced antinociceptive activity along with low toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Jhinjharia, A. C. Kaushik, S. Sahi, Chemoinformatics and Bioinformatics in the Pharmaceutical Sciences, Academic Press, London, 2021, pp. 55–103; DOI: https://doi.org/10.1016/B978-0-12-821748-1.00009-9.

    Book  Google Scholar 

  2. G. Bouz, M. Dolezal, Pharmaceuticals (Basel), 2021, 14, 1312; DOI: https://doi.org/10.3390/ph14121312.

    Article  CAS  PubMed  Google Scholar 

  3. L. Huang, J. Yang, T. Wang, J. Gao, D. Xu, J. Nano-biotechnology, 2022, 20, 49; DOI: https://doi.org/10.1186/s12951-022-01257-4.

    CAS  Google Scholar 

  4. A. A. Ivashchenko, O. D. Mitkin, J. C. Jones, A. V. Nikitin, A. G. Koryakova, A. Ryakhovskiy, R. N. Karapetian, D. V. Kravchenko, V. Aladinskiy, I. A. Leneva, I. N. Falynskova, E. A. Glubokova, E. A. Govorkova, A. V. Ivachtchenko, J. Med. Chem., 2020, 63, 9403; DOI: https://doi.org/10.1021/acs.jmedchem.0c00565.

    Article  CAS  PubMed  Google Scholar 

  5. K. E. Samy, C. Gampe, Bioorg. Med. Chem. Lett., 2022, 62, 128627; DOI: https://doi.org/10.1016/j.bmcl.2022.128627.

    Article  CAS  PubMed  Google Scholar 

  6. A. A. Babushkina, A. V. Dogadina, D. M. Egorov, J. L. Piterskaia, A. A. Shtro, Yu. V. Nikolaeva, A. V. Galo-chkina, A. A. Kornev, V. M. Boitsov, Med. Chem. Res., 2021, 30, 2203; DOI: https://doi.org/10.1007/s00044-021-02801-x.

    Article  CAS  Google Scholar 

  7. S. N. Igidov, A. Yu. Turyshev, R. R. Makhmudov, D. A. Shipilovskikh, N. M. Igidov, S. A. Shipilovskikh, Russ. J. Gen. Chem., 2022, 92, 1629; DOI: https://doi.org/10.1134/S1070363222090067.

    Article  CAS  Google Scholar 

  8. D. N. Gavkus, O. A. Maiorova, M. Yu. Borisov, A. Yu. Egorova, Russ. J. Org. Chem., 2012, 48, 1229; DOI: https://doi.org/10.1134/s107042801209014x.

    Article  CAS  Google Scholar 

  9. D. V. Lipin, E. I. Denisova, D. A. Shipilovskikh, R. R. Makhmudov, N. M. Igidov, S. A. Shipilovskikh, Russ. J. Org. Chem., 2022, 58, 1354; DOI: https://doi.org/10.1134/S1070428022120041.

    Article  Google Scholar 

  10. I. A. Gorbunova, D. A. Shipilovskikh, A. E. Rubtsov, S. A. Shipilovskikh, Russ. J. Gen. Chem., 2021, 91, 1623; DOI: https://doi.org/10.1134/s1070363221090048.

    Article  Google Scholar 

  11. O. A. Mayorova, A. Yu. Yegorova, Magn. Reson. Chem., 2015, 53, 853; DOI: https://doi.org/10.1002/mrc.4270.

    Article  CAS  PubMed  Google Scholar 

  12. A. I. Siutkina, S. V. Chashchina, R. R. Makhmudov, I. A. Kizimova, S. A. Shipilovskikh, N. M. Igidov, Russ. J. Org. Chem., 2021, 57, 1874; DOI: https://doi.org/10.1134/S1070428021110105.

    Article  CAS  Google Scholar 

  13. S. A. Shipilovskikh, A. E. Rubtsov, Russ. J. Gen. Chem., 2020, 90, 809; DOI: https://doi.org/10.1134/s1070363220050084.

    Article  CAS  Google Scholar 

  14. S. A. Shipilovskikh, I. A. Gorbunova, A. E. Rubtsov, AIP Conf. Proc., 2020, 2280, 030017; DOI: https://doi.org/10.1063/5.0018490.

    Article  Google Scholar 

  15. S. A. Shipilovskikh, A. E. Rubtsov, J. Org. Chem., 2019, 84, 15788; DOI: https://doi.org/10.1021/acs.joc.9b00711.

    Article  CAS  PubMed  Google Scholar 

  16. S. N. Igidov, I. A. Gorbunova, A. Yu. Turyshev, D. A. Shipilovskikh, D. A. Kozlov, A. S. Rogova, R. R. Makhmudov, P. S. Silaichev, N. M. Igidov, Chimica Techno Acta, 2022, 10, 202310101; DOI: https://doi.org/10.15826/chimtech.2023.10.1.01.

    Article  Google Scholar 

  17. D. V. Lipin, E. I. Denisova, I. O. Devyatkin, E. A. Okoneshnikova, D. A. Shipilovskikh, R. R. Makhmu-dov, N. M. Igidov, S. A. Shipilovskikh, Russ. J. Gen. Chem., 2022, 91, 2469; DOI: https://doi.org/10.1134/S1070363221120161.

    Article  Google Scholar 

  18. E. I. Denisova, D. V. Lipin, K. Yu. Parkhoma, I. O. Devyatkin, D. A. Shipilovskikh, S. V. Chashchina, R. R. Makhmudov, N. M. Igidov, S. A. Shipilovskikh, Russ. J. Org. Chem., 2022, 57, 1955; DOI: https://doi.org/10.1134/s1070428021120083.

    Article  Google Scholar 

  19. I. A. Gorbunova, E. A. Okoneshnikova, R. R. Makh-mudov, D. A. Shipilovskikh, V. M. Shadrin, P. S. Silaichev, S. A. Shipilovskikh, Russ. Chem. Bull., 2023, 72, 1905.

    Article  CAS  Google Scholar 

  20. S. N. Igidov, A. Yu. Turyshev, R. R. Makhmudov, D. A. Shipilovskikh, M. V. Dmitriev, O. V. Zvereva, P. S. Silaichev, N. M. Igidov, S. A. Shipilovskikh, Russ. J. Gen. Chem., 2023, 93, 253; DOI: https://doi.org/10.1134/S1070363223020044.

    Article  CAS  Google Scholar 

  21. V. Nair, M. Okello, Molecules, 2015, 20, 12623; DOI: https://doi.org/10.3390/molecules200712623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Z. Wang, J. Tang, C. E. Salomon, C. D. Dreis, R. Vince, Bioorg. Med. Chem., 2010, 18, 4202; DOI: https://doi.org/10.1016/j.bmc.2010.05.004.

    Article  CAS  PubMed  Google Scholar 

  23. H. Sharma, T. W. Sanchez, N. Neamati, M. Detorio, R. F. Schinazi, X. Cheng, J. K. Buolamwini, Bioorg. Med. Chem. Lett., 2013, 23, 6146; DOI: https://doi.org/10.1016/j.bmcl.2013.09.009.

    Article  CAS  PubMed  Google Scholar 

  24. N. Karimi, R. V. Roudsari, Z. Hajimahdi, A. Zarghi, Med. Chem., 2022, 18, 616; DOI: https://doi.org/10.2174/1573406417666210929124944.

    Article  CAS  PubMed  Google Scholar 

  25. O. V. Bobrovskaya, A. A. Russkih, A. N. Yankin, M. V. Dmitriev, A. S. Bunev, V. L. Gein, Synth. Commun., 2021, 51, 1731; DOI: https://doi.org/10.1080/00397911.2021.1903930.

    CAS  Google Scholar 

  26. N. A. Pulina, A. S. Kuznetsov, A. I. Krasnova, V. V. Novikova, Pharm. Chem. J., 2019, 53, 220; DOI: https://doi.org/10.1007/s11094-019-01983-4.

    Article  CAS  Google Scholar 

  27. I. N. Cvijetić, T. Ž. Verbić, P. E. de Resende, P. Stapleton, S. Gibbons, I. O. Juranic, B. J. Drakulić, M. Zloh, Eur. J. Med. Chem., 2018, 143, 1474; DOI: https://doi.org/10.1016/j.ejmech.2017.10.045.

    Article  PubMed  Google Scholar 

  28. Y. Fernandez-Garcia, S. T. Horst, M. Bassetto, A. Brancale, J. Neyts, D. Rogolino, M. Sechi, M. Carcelli, S. Gunther, J. Rocha-Pereira, Antiviral. Res., 2020, 183, 104947; DOI: https://doi.org/10.1016/j.antiviral.2020.104947.

    Article  CAS  PubMed  Google Scholar 

  29. D. V. Lipin, S. K. Metlyakova, D. A. Shipilovskikh, R. R. Makhmudov, P. S. Silaichev, N. M. Igidov, S. A. Shipilovskikh, Russ. Chem. Bull., 2023, 72, 1887.

    Article  CAS  Google Scholar 

  30. N. Joksimović, N. Janković, G. Davidović, Z. Bugarčić, Bioorg. Chem., 2020, 105, 104343; DOI: https://doi.org/10.1016/j.bioorg.2020.104343.

    Article  PubMed  Google Scholar 

  31. F. V. Sobin, N. A. Pulina, K. V. Lipatnikov, A. V. Starkova, T. A. Yushkova, E. A. Naugol’nykh, Pharm. Chem. J., 2021, 54, 1003; DOI: https://doi.org/10.1007/s11094-021-02310-6.

    Article  CAS  Google Scholar 

  32. V. L. Gein, T. M. Zamaraeva, N. A. Buzmakova, I. P. Rudakova, M. V. Dmitriev, Pharm. Chem. J., 2018, 52, 515; DOI: https://doi.org/10.1007/s11094-018-1851-0.

    Article  CAS  Google Scholar 

  33. O. N. Gein, T. M. Zamaraeva, V. L. Gein, Pharm. Chem. J., 2019, 53, 40; DOI: https://doi.org/10.1007/s11094-019-01952-x.

    Article  CAS  Google Scholar 

  34. S. G. Nayak, B. Poojary, V. Kamat, D. Puthran, J. Chin. Chem. Soc. (Taipei), 2021, 68, 1116; DOI: https://doi.org/10.1002/jccs.202000166.

    Article  CAS  Google Scholar 

  35. S. G. Nayak, B. Poojary, V. Kamat, Arch. Pharm. (Weinheim), 2020, 353, e2000103; DOI: https://doi.org/10.1002/ardp.202000103.

    Article  PubMed  Google Scholar 

  36. M. Al-Ghorbani, M. A. Gouda, J. Heterocycl. Chem., 2020, 57, 3213; DOI: https://doi.org/10.1002/jhet.4041.

    Article  CAS  Google Scholar 

  37. M. E. Khalifa, W. M. Algothami, J. Mol. Struct., 2020, 1207, 127784; DOI: https://doi.org/10.1016/j.molstruc.2020.127784.

    Article  Google Scholar 

  38. A. A. Gryshchenko, V. G. Bdzhola, A. O. Balanda, N. V. Briukhovetska, I. M. Kotey, A. G. Golub, T. P. Ruban, L. L. Lukash, S. M. Yarmoluk, Bioorg. Med. Chem., 2015, 23, 2287; DOI: https://doi.org/10.1016/j.bmc.2014.12.044.

    Article  CAS  PubMed  Google Scholar 

  39. A. G. Golub, V. G. Bdzhola, N. V. Briukhovetska, A. O. Balanda, O. P. Kukharenko, I. M. Kotey, O. V. Ostrynska, S. M. Yarmoluk, Eur. J. Med. Chem., 2011, 46, 870; DOI: https://doi.org/10.1016/j.ejmech.2010.12.025.

    Article  CAS  PubMed  Google Scholar 

  40. S. H. Choi, S. Ryu, K. Sim, C. Song, I. Shin, S. S. Kim, Y. S. Lee, J. Y. Park, T. Sim, Eur. J. Med. Chem., 2020, 208, 112688; DOI: https://doi.org/10.1016/j.ejmech.2020.112688.

    Article  CAS  PubMed  Google Scholar 

  41. V. D. S. Oliveira, M. M. D. Cruz, G. S. Bezerra, N. Silva, F. H. A. Nogueira, G. M. Chaves, J. L. S. Sobrinho, F. J. B. Mendonca-Junior, B. Damasceno, A. Converti, A. A. N. Lima, Mar. Drugs, 2022, 20, 103; DOI: https://doi.org/10.3390/md20020103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. K. S. Jain, V. M. Khedkar, N. Arya, P. V. Rane, P. K. Chaskar, E. C. Coutinho, Eur. J. Med. Chem., 2014, 77, 166; DOI: https://doi.org/10.1016/j.ejmech.2014.02.066.

    Article  CAS  PubMed  Google Scholar 

  43. I. Luna, W. Neves, R. de Lima-Neto, A. Albuquerque, M. Pitta, M. Rêgo, R. Neves, M. Scotti, F. Mendonça-Junior, J. Braz. Chem. Soc., 2021, 32, 1017; DOI: https://doi.org/10.21577/0103-5053.20210004.

    CAS  Google Scholar 

  44. N. Singla, G. Singh, R. Bhatia, A. Kumar, R. Kaur, S. Kaur, ChemistrySelect, 2020, 5, 3835; DOI: https://doi.org/10.1002/slct.202000191.

    Article  CAS  Google Scholar 

  45. W. A. Elgaher, M. Fruth, M. Groh, J. Haupenthal, R. W. Hartmann, RSC Adv., 2014, 4, 2177; DOI: https://doi.org/10.1039/c3ra45820b.

    Article  CAS  Google Scholar 

  46. O. D. Vlasova, K. Yu. Krolenko, M. A. Nechayev, P. E. Shynkarenko, V. I. Kabachnyy, S. V. Vlasov, Chem. Heterocycl. Compd., 2019, 55, 184]; DOI: https://doi.org/10.1007/s10593-019-02437-1.

    Article  CAS  Google Scholar 

  47. T. He, T. C. Edwards, R. Majima, E. Jung, J. Kankanala, J. Xie, R. J. Geraghty, Z. Wang, Bioorg. Chem., 2022, 129, 106198; DOI: https://doi.org/10.1016/j.bioorg.2022.106198.

    Article  CAS  PubMed  Google Scholar 

  48. P. B. Dudhe, K. S. Jain, V. K. Raskar, A. S. Deodhe, J. G. Patel, M. S. Phoujdar, M. K. Kathiravan, Med. Chem. Res., 2013, 22, 3719; DOI: https://doi.org/10.1007/s00044-012-0358-6.

    Article  CAS  Google Scholar 

  49. M. K. Kathiravan, K. D. More, V. K. Raskar, K. S. Jain, M. Maheshwar, S. Gadhwe, D. P. Jain, M. A. Nagras, M. S. Phoujdar, Med. Chem. Res., 2013, 22, 4286; DOI: https://doi.org/10.1007/s00044-012-0263-z.

    Article  CAS  Google Scholar 

  50. Y. Wang, J. Gao, S. Zhao, Y. Song, H. Huang, G. Zhu, P. Jiao, X. Xu, G. Zhang, K. Wang, L. Zhang, Z. Liu, Acta Pharm. Sin. B, 2021, 11, 1947; DOI: https://doi.org/10.1016/j.apsb.2020.11.004.

    Article  CAS  PubMed  Google Scholar 

  51. T. Redij, J. A. McKee, P. Do, J. A. Campbell, J. Ma, Z. Li, N. Miller, C. Srikanlaya, D. Zhang, X. Hua, Z. Li, Chem. Biol. Drug Des., 2022, 99, 857; DOI: https://doi.org/10.1111/cbdd.14039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. A. Rossetti, N. Bono, G. Candiani, F. Meneghetti, G. Roda, A. Sacchetti, Chem. Biodivers., 2019, 16, e1900097; DOI: https://doi.org/10.1002/cbdv.201900097.

    Article  PubMed  Google Scholar 

  53. J. A. S. Mulla, M. I. A. Khazi, S. I. Panchamukhi, Y. D. Gong, I. A. M. Khazi, Med. Chem. Res., 2014, 23, 3235; DOI: https://doi.org/10.1007/s00044-013-0900-1.

    Article  CAS  Google Scholar 

  54. D. V. Lipin, K. Y. Parkhoma, V. M. Shadrin, R. R. Makhmudov, D. A. Shipilovskikh, P. S. Silaichev, S. A. Shipilovskikh, Russ. Chem. Bull., 2023. 72, 1913.

    Article  CAS  Google Scholar 

  55. I. A. Gorbunova, Yu. O. Sharavyeva, R. R. Makhmudov, D. A. Shipilovskikh, V. M. Shadrin, N. A. Pulina, S. A. Shipilovskikh, Russ. J. Gen. Chem., 2022, 92, 1899; DOI: https://doi.org/10.1134/S1070363222100048.

    Article  CAS  Google Scholar 

  56. A. I. Siutkina, Yu. O. Sharavyeva, S. V. Chashchina, S. A. Shipilovskikh, N. M. Igidov, Russ. Chem. Bull., 2022, 71, 496; DOI: https://doi.org/10.1007/s11172-022-3439-9.

    Article  CAS  Google Scholar 

  57. D. A. Shipilovskikh, R. R. Makhmudov, A. E. Rubtsov, S. A. Shipilovskikh, Russ. J. Gen. Chem., 2021, 91, 2025; DOI: https://doi.org/10.1134/S1070363221100157.

    Article  CAS  Google Scholar 

  58. Yu. O. Sharavyeva, A. I. Siutkina, S. V. Chashchina, V. V. Novikova, R. R. Makhmudov, S. A. Shipilovskikh, Russ. Chem. Bull., 2022, 71; DOI: https://doi.org/10.1007/s11172-022-3445-y.

  59. I. A. Gorbunova, V. M. Shadrin, N. A. Pulina, V. V. Novikova, S. S. Dubrovina, D. A. Shipilovskikh, S. A. Shipilovskikh, Russ. J. Gen. Chem., 2023, 93, 8; DOI: https://doi.org/10.1134/S1070363223010024.

    Article  CAS  Google Scholar 

  60. A. Rogova, I. A. Gorbunova, T. E. Karpov, R. Yu. Sidorov, A. E. Rubtsov, D. A. Shipilovskikh, A. R. Muslimov, M. V. Zyuzin, A. S. Timin, S. A. Shipi-lovskikh, Eur. J. Med. Chem, 2023; DOI: https://doi.org/10.1016/j.ejmech.2023.115325.

  61. N. A. Zhestkij, E. V. Gunina, S. P. Fisenko, A. E. Rubtsov, D. A. Shipilovskikh, V. A. Milichko, S. A. Shipilovskikh, Chimica Techno Acta, 2021, 8, 20218411; DOI: https://doi.org/10.15826/chimtech.2021.8.4.11.

    Article  CAS  Google Scholar 

  62. E. Gunina, N. Zhestki, S. Bachinin, S. P. Fisenko, D. A. Shipilovskikh, V. A. Milichko, S. A. Shipilovskikh, Photon. Nanostruct. Fund. Appl., 2022, 48, 100990; DOI: https://doi.org/10.1016/j.photonics.2021.100990.

    Article  Google Scholar 

  63. S. A. Shipilovskikh, R. R. Makhmudov, D. Yu. Lupach, P. T. Pavlov, E. V. Babushkina, A. E. Rubtsov, Pharm. Chem. J., 2013, 47, 366; DOI: https://doi.org/10.1007/s11094-013-0960-z.

    Article  CAS  Google Scholar 

  64. N. B. Eddy, D. J. Leimbach, J. Pharmacol. Exp. Ther., 1953, 107, 385.

    CAS  PubMed  Google Scholar 

  65. Rukovodstvo po provedeniyu doklinicheskikh issledovanii lekarstvennykh sredstv [Guidelines for Preclinical Trials of Medications, Ed. A. N. Mironov, Grif and Co., Moscow, 2012, p. 509 (in Russian).

    Google Scholar 

  66. E. Adami, E. Marazzi, Arch. Int. Pharmacodyn. Ther., 1956, 107, 322.

    CAS  PubMed  Google Scholar 

  67. G. N. Pershin, Metody eksperimental’noi khimioterapii [Methods of Experimental Chemotherapy], Meditsina, Moscow, 1971, pp. 109–117502 (in Russian).

    Google Scholar 

  68. V. M. Tormyshev, D. V. Trukhin, O. Yu. Rogozhnikova, T. V. Mikhalina, T. I. Troitskaya, A. Flinn, Synlett, 2006, 16, 2559; DOI: https://doi.org/10.1055/s-2006-951484.

    Article  Google Scholar 

  69. T. Ž. Verbić, B. J. Drakulić, M. F. Zloh, J. R. Pecelj, G. V. Popović, I. O. Juranić, J. Serbian Chem. Soc., 2007, 72, 1201; DOI: https://doi.org/10.2298/jsc0712201v.

    Article  Google Scholar 

  70. A. Bhatt, K. R. Gurukumar, A. Basu, M. R. Patel, N. Kaushik-Basu, T. T. Talele, Eur. J. Med. Chem., 2011, 46, 5138; DOI: https://doi.org/10.1016/j.ejmech.2011.08.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. N. F. Izmerov, I. V. Sanotskii, K. K. Sidorov, Parametry toksikometrii promyshlennykh yadov pri odnokratnom vozdeistvii (spravochnik) [Parameters of Toxico-metry of Industrial Poisons with a Single Exposure: (Reference Book)], Meditsina, Moscow, 1977, 196 pp. (in Russian).

    Google Scholar 

  72. M. L. Belen’kii, Elementy kolichestvennoi otsenki farmakologicheskogo effekta [Elements of Quantitative Assessment of Pharmacological Effect, Medgiz, Leningrad, 1963, p. 146 (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Shipilovskikh.

Ethics declarations

The authors declare no competing interests.

Additional information

This study was performed under financial support of the “Rational Use of the Earth Interior” Perm Scientific Educational Center 2023.

All experiments involving animals and their maintenance complied the rules of European Convention for the Protection of Vertebrate Animals used for Experimental and Other Scientifi c Purposes (Strasbourg, 1986), the rules of Good Laboratory Practice, and the Order of the Ministry of Health of the Russian Federation dated June 6, 2003, No. 267 “On Approval of the Rules of Good Laboratory Practice”.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 9, pp. 2255–2262, September, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorbunova, I.A., Nikonov, I.P., Makhmudov, R.R. et al. Synthesis, intramolecular cyclization, and antinociceptive activity of 4-(het)aryl-2-{[4-(4-chlorophenyl)-3-(ethoxycarbonyl)thiophen-2-yl]amino}-4-oxobut-2-enoic acids. Russ Chem Bull 72, 2255–2262 (2023). https://doi.org/10.1007/s11172-023-4023-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-4023-7

Key words

Navigation