Skip to main content
Log in

Urethane oligomers as the models for liquid crystalline polymers

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

A series of new liquid crystalline oligomers based on 1,6-hexamethylene diisocyanate and its di- or trimers (uretdione, biuret, or isocyanurate) and 4′-ω -hydroxyalkyl-4-cyano-biphenyls was synthesized. The resulting set of oligomers is a structural model for liquid crystalline polymers containing mesogenic groups in the main and side chains, as well as star polymers. Mesomorphic properties of the oligomers were evaluated using differential scanning calorimetry and polarization optical microscopy. Structure and dipole architecture of the central unit of synthesized oligomers cause a decisive influence on their mesomorphic properties. The formation of network of interchain hydrogen bonds significantly stabilized the liquid crystalline state, which was confirmed by IR spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. T. Imrie, G. R. Luckhurst, Liquid crystal dimers and oligomers. In: J. W. Goodby, P. J. Collings, T. Kato, editors, The handbook of liquid crystals, Wiley— VCH, Weinheim, 2014, 7, 137–210; DOI: https://doi.org/10.1002/9783527671403.HLC108.

    Google Scholar 

  2. A. K. Brel, Yu. N. Budaeva, S. V. Lisina, A. D. Marakhovskaya, Russ. Chem. Bull., 2022, 71, 2335–2341.

    Article  CAS  Google Scholar 

  3. V. K. Thakur, M. R. Kessler, Liquid Crystalline Polymers, Springer, Basel, 2016.

    Book  Google Scholar 

  4. C. T. Imrie, P. A. Henderson, Curr. Open. Colloid. Interface Sci., 2002, 7, 298–311; DOI: https://doi.org/10.1002/9783527671403.HLC108.

    Article  CAS  Google Scholar 

  5. C. T. Imrie, P. A. Henderson, Chem. Soc. Rev. Fundamentals of liquid crystals, In: J. W. Goodby, P. J. Collings, T. Kato, Handbook of liquid crystals, Wiley— VCH, Weinheim, 2014, Vol. 1.

    Article  CAS  PubMed  Google Scholar 

  6. J. Goodby, G. Mehl, I. Sáez, R. Tuffin, G. Mackenzie, R. Auzély-Velty, T. Benvegnu, D. Plusquellec, Chem Commun., 1998, 2057–2070; DOI: https://doi.org/10.1039/a802762e.

  7. M. Marcos, R. Martin-Rapun, A. Omenat, J. Serrano, Chem. Soc. Rev., 2007, 36, 1889–1901; DOI: https://doi.org/10.1039/b611123h.

    Article  CAS  PubMed  Google Scholar 

  8. B. Donnio, S. Buathong, I. Bury, D. Guillon, Chem. Soc. Rev., 2007, 36, 1495–1513; DOI: https://doi.org/10.1039/b605531c.

    Article  CAS  PubMed  Google Scholar 

  9. B. Rosen, C. Wilson, D. Wilson, M. Peterca, M. Imam, V. Percec, Chem. Rev., 2009, 109, 6275–6540; DOI: https://doi.org/10.1021/cr900157q.

    Article  CAS  PubMed  Google Scholar 

  10. M. Marcos, R. Giménez, J. Serrano, B. Donnio, B. Heinrich, D. Guillon, Chem. Eur. J., 2001, 7, 1006–1013; DOI: https://doi.org/10.1002/1521-3765(20010302)7:5<1006::aid-chem1006>3.0.co;2-n.

    Article  CAS  PubMed  Google Scholar 

  11. R. Prabhu, C. Yelamaggad, J. Phys. Chem. B, 2015, 119, 11935–11952; DOI: https://doi.org/10.1021/acs.jpcb.5b06073.

    Article  CAS  PubMed  Google Scholar 

  12. E. Davis, R. Mandle, B. K. Russell, Ph. Y. Foeller, M. Cook, S. Cowling, J. Goodby, Liq. Cryst., 2014, 41, 1635–1645; DOI:https://doi.org/10.1080/02678292.2014.940505.

    Article  CAS  Google Scholar 

  13. K. Wang, M. Jirka, P. Rai, R. Twieg, T. Szilvási, H. Yu, N. Abbott, M. Mavrikakis, Liq. Cryst., 2018, 46, 1–11; DOI: https://doi.org/10.1080/02678292.2018.1502373.

    Google Scholar 

  14. K. Kress, M. Kaller, K. Axenov, S. Tussetschläger, S. Laschat, Beilstein J. Org. Chem., 2012, 8, 371–378; DOI: https://doi.org/10.3762/bjoc.8.40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. H. Kolb, M. Finn, K. Sharpless, Angew. Chem. Inter. Ed., 2001, 40, 2004–2021; DOI: https://doi.org/10.1002/1521-3773(20010601)40:11<2004-aid-anie2004>3.3.co;2-x.

    Article  CAS  Google Scholar 

  16. G. Luckhurst, Liq. Cryst., 2005, 32, 1335–1364; DOI: https://doi.org/10.1080/02678290500423128.

    Article  CAS  Google Scholar 

  17. V. Zuev, S. Bronnikov, Liq. Cryst., 2008, 35, 1293–1298; DOI: https://doi.org/10.1080/02678290802528368.

    Article  CAS  Google Scholar 

  18. R. W. Seymour, G. M. Estes, S. L. Cooper, Macro-molecules, 1970, 3, 579–583; DOI: https://doi.org/10.1021/MA60017A021.

    Article  Google Scholar 

  19. E. Yilgor, I. Yilgor, E. Yurtsever, Polymer., 2002, 3, 6551–6559; DOI: https://doi.org/10.1016/S0032-3861(02)00567-0.

    Article  Google Scholar 

  20. B. Prével, J. Dupuy-Philon, J. Jal, J. Mol. Struct., 1994, 322, 141–149; DOI: https://doi.org/10.1016/0022-2860(94)87028-4.

    Article  Google Scholar 

  21. D. P. M. Mingos editor, Supramolecular Assembly via Hydrogen Bonds I, Springer, Berlin, 2004.

    Google Scholar 

  22. T. Kato, J. Uchida, T. Ichikawa, Polym. J., 2018, 50, 149–166; DOI: https://doi.org/10.1038/PJ.2017.55.

    Article  CAS  Google Scholar 

  23. J. W. Gray, G. W. Goodby, Smectic Liquid Crystals: Textures and Structures, Leonard Hill, Cambridge, 1984.

    Google Scholar 

  24. N. Prabu, M. L. N. Madhu Mohan, J. Mol. Liq., 2013, 182, 79–90; DOI: https://doi.org/10.1016/J.MOLLIQ.2013.03.014.

    Article  Google Scholar 

  25. N. Tsvetkov, V. Zuev, S. Didenko, V. Tsvetkov, Vysokomol. Soed. Ser. A, 1995, 37, 1255–1264.

    CAS  Google Scholar 

  26. A. E. Soldatova, A. Yu. Tsegelskaya, G. K. Semenova, I. V. Bezsudnov, M. S. Polinskaya, I. G. Abramov, A. A. Kuznetsov, Russ. Chem. Bull., 2022, 71, 777–786; DOI: DOI: https://doi.org/10.1007/s11172-022-3478-2.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Zuev.

Additional information

No human or animal subjects were used in this research.

The authors declare no competing interests.

Based on the materials of the XVIII International Research and Development Conference “Novel Polymeric Composites. Mikitaev Readings” (July 4–9, 2022; p. Elbrus, Kabardino-Balkarian Republic, Russia).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 6, pp. 1430–1437, June, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorbachev, S.A., Zuev, V.V. Urethane oligomers as the models for liquid crystalline polymers. Russ Chem Bull 72, 1430–1437 (2023). https://doi.org/10.1007/s11172-023-3918-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-3918-7

Key words

Navigation