Skip to main content
Log in

Photodegradation of composites based on polylactide and polybutylene adipate terephtalate

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Degradation of polylactide (PLA)— polybutylene adipate terephthalate (PBAT) mixtures under the action of UV radiation (λ= 254 and 365 nm) was investigated. It is established that polybutylene adipate terephthalate slows down the PLA degradation without changing its mechanism. After photodegradation, the PLA glass transition temperature shifts to higher values, while its melting point decreases by 3.6–5.0 °C (λ = 254 nm). The crystallinity degree of PLA is reduced by no more than 5% after exposure to UV radiation at both wavelengths. After UV radiation at both wavelengths, intensities of characteristic IR bands of both components change substantially. The mechanical properties of mixtures of all studied compositions deteriorate after irradiation with light with λ = 254 nm for 50 h, and more significant deterioration is observed for samples with a predominance of PLA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Campos, J. M. Marconcini, S. M. Martins-Fran-chetti, L. H. C. Mattoso, Polym. Degrad. Stab., 2012, 97, 1948–1955.1; DOI: https://doi.org/10.1016/j.polymdegradstab.2011.11.010.

    Article  CAS  Google Scholar 

  2. S. Commereuc, H. Askanian, V. Verney, A. Celli, P. Marchese, C. Berti, Polym. Degrad. Stab., 2013, 98, 1321–1328; DOI: https://doi.org/10.1016/j.polymdegradstab.2013.03.030.

    Article  CAS  Google Scholar 

  3. P. K. Roy, P. Surekha, R. Raman, C. Rajagopal, Polym. Degrad. Stab., 2009, 94, 1033–1039; DOI: https://doi.org/10.1016/j.polymdegradstab.2009.04.025.

    Article  CAS  Google Scholar 

  4. M. Ahmad Sawpan, M. R. Islam, M. D. H. Beg, K. Pickering, J. Polym. Environ., 2019, 27, 942–955; DOI: https://doi.org/10.1007/s10924-019-01405-2.

    Article  CAS  Google Scholar 

  5. M. V. Podzorova, Y. V. Tertyshnaya, Russ. Chem. Bull., 2021, 70, 1791–1797; DOI: https://doi.org/10.1007/s11172-021-3284-2.

    Article  CAS  Google Scholar 

  6. S. Belbachir, F. Zaïri, G. Ayoub, U. Maschke, M. Naït-Abdelaziz, J. M. Gloaguen, M. Benguediab, J. M. Lefebvre, J. Mech. Phys. Solids, 2010, 58, 241–255; DOI: https://doi.org/10.1016/j.jmps.2009.10.003.

    Article  CAS  Google Scholar 

  7. Y. Tertyshnaya, M. Podzorova, M. Moskovskiy, Polymers, 2021, 13, 461; DOI: https://doi.org/10.3390/polym13030461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Y. V. Tertyshnaya, M. V. Podzorova, Russ. J. Phys. Chem. B, 2020, 14, 167–175; DOI: https://doi.org/10.31857/S0207401X20010173.

    Article  CAS  Google Scholar 

  9. E. Olewnik-Kruszkowska, I. Koter, J. Skopinska-Wisniewska, J. Richert, J. Photochem. Photobiol. A, 2015, 311, 144–153; DOI: https://doi.org/10.1016/j.jphotochem.2015.06.029.

    Article  CAS  Google Scholar 

  10. Y. V. Tertyshnaya, A. V. Lobanov, S. G. Karpova, P. V. Pantyukhov, J. Mol. Liq., 2020, 302, 112176; DOI: https://doi.org/10.1016/j.molliq.2019.112176.

    Article  CAS  Google Scholar 

  11. Y. V. Tertyshnaya, S. G. Karpova, M. V. Podzorova, A. V. Khvatov, M. N. Moskovskiy, Polymers, 2022, 14, 1058; DOI: https://doi.org/10.3390/polym14051058C.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. A. R. Kaynak, A. R. Erdogan, Polym. Adv. Technol., 2016, 27, 812–822; DOI: https://doi.org/10.1002/pat.3721.

    Article  CAS  Google Scholar 

  13. N. B. Svishcheva, P. A. Khaptakhanova, S. A. Uspen-skii, D. A. Kasatov, Russ. Chem. Bull., 2021, 70, 1725–1728; DOI: https://doi.org/10.1007/s11172-021-3276-2.

    Article  CAS  Google Scholar 

  14. T. Kij chavengkul, R. Auras, M. Rubino, S. Selke, M. Ngouajio, R. T. Fernandez, Polym. Degrad. Stab., 2010, 95, 2641–2647; DOI: https://doi.org/10.1016/j.polymdegradstab.2010.07.018.

    Article  CAS  Google Scholar 

  15. M. Musioł, W. Sikorska, H. Janeczek, W. Wałech, A. Hercog, B. Johnston, J. Rydz, Waste Manage, 2018, 77, 447–454; DOI: https://doi.org/10.1016/j.wasman.2018.04.030.

    Article  Google Scholar 

  16. P. A. Palsikowski, C. N. Kuchnier, I. F. Pinheiro, A. R. Morales, J. Polym. Environ., 2018, 26, 330–341; DOI: https://doi.org/10.1007/s10924-017-0951-3.

    Article  CAS  Google Scholar 

  17. J. Jian, Z. Xiangbin, H. Xianbo, Adv. Ind. Eng. Polym. Res., 2020, 3, 19–26; DOI: https://doi.org/10.1016/j.aiepr.2020.01.001.

    Google Scholar 

  18. X. Gao, D. Xie, C. Yang, Agric. Water Manag., 2021, 255, 107053; DOI: https://doi.org/10.1016/j.agwat.2021.107053.

    Article  Google Scholar 

  19. Y. X. Weng, Y. J. Jin, Q. Y. Meng, L. Wang, M. Zhang, Y. Z. Wang, Polym. Test., 2013, 32, 918–926; DOI: https://doi.org/10.1016/j.polymertesting.2013.05.001.

    Article  CAS  Google Scholar 

  20. F. Muroi, Y. Tachibana, Y. Kobayashi, T. Sakurai, K. I. Kasuya, Polym. Degrad. Stab., 2016, 129, 338–346; DOI: https://doi.org/10.1016/j.polymdegradstab.2016.05.018.

    Article  CAS  Google Scholar 

  21. J. R. Rocca-Smith, T. Karbowiak, E. Marcuzzo, A. Sensidoni F. Piasente, D. Champion, O. Heinz, P. Vitry, E. Bourillot, E. Lesniewsk, F. Debeaufort, Polym. Degrad. Stab., 2016, 132, 109; DOI: https://doi.org/10.1016/j.polymdegradstab.2016.03.020.

    Article  CAS  Google Scholar 

  22. J. W. Martin, J. W. Chin, T. Nguyen, Prog. Org. Coat., 2003, 47, 292–311; DOI: https://doi.org/10.1016/j.porgcoat.2003.08.002.

    Article  CAS  Google Scholar 

  23. M. K. Lila, K. Shukla, U. K. Komal, I. Singh, Compos. Eng., 2019, 156, 121–127; DOI: https://doi.org/10.1016/j.compositesb.2018.08.068.

    Article  CAS  Google Scholar 

  24. M. E. González-López, A. S. Martín del Campo, J. R. Robledo-Ortíz, M. Arellano, A. A. Pérez-Fonseca, Polym. Degrad. Stab., 2020, 179, 109290; DOI: https://doi.org/10.1007/s10965-020-02368-y.

    Article  Google Scholar 

  25. W. Yang, F. Dominici, E. Fortunati, J. M. Kenny, D. Puglia, Ind. Crop. Prod., 2015, 77, 833–844; DOI: https://doi.org/10.1016/j.indcrop.2015.09.057.

    Article  CAS  Google Scholar 

  26. A. V. Janorkar, A. T. Metters, D. E. Hirt, J. Appl. Polym. Sci., 2007, 106, 1042–1047; DOI: https://doi.org/10.1002/app.24692.

    Article  CAS  Google Scholar 

  27. M. V. Podzorova, Y. V. Tertyshnaya, S. G. Karpova, A. A. Popov, IOP Conf. Ser.: Mater. Sci. Eng., 2019, 525, 012043; DOI: https://doi.org/10.1088/1757-899X/525/1/012043

    Article  CAS  Google Scholar 

  28. S. Bocchini, K. Fukushima, A. D. Blasio, A. Fina, F. F. Geobaldo, Biomacromolecules, 2010, 11, 2919; DOI: https://doi.org/10.1021/bm1006773.

    Article  CAS  PubMed  Google Scholar 

  29. L.-T. Lim, R. Auras, M. Rubino, Prog. Polym. Sci., 2008, 33, 820–852; DOI: https://doi.org/10.1016/j.progpolymsci.2008.05.004.

    Article  CAS  Google Scholar 

  30. R. Auras, B. Harte, S. Selke, Macromol. Biosci., 2004, 4, 835–864; DOI: https://doi.org/10.1002/mabi.200400043.

    Article  CAS  PubMed  Google Scholar 

  31. K. M. Nampoothiri, N. R. Nair, R. P. John, Bioresour. Technol., 2010, 101, 8493–8501; DOI: https://doi.org/10.1016/j.biortech.2010.05.092.

    Article  Google Scholar 

  32. X. Pang, X. Zhuang, Z. Tang, X. Chen, Biotechnol. J., 2010, 5, 1125–1136; DOI: https://doi.org/10.1002/biot.201000135.

    Article  CAS  PubMed  Google Scholar 

  33. X. Qi, Y. Ren, X. Wang, Int. Biodeterior. Biodegrad., 2017, 117, 215–223; DOI: https://doi.org/10.12775/EQ.2018.030.

    Article  CAS  Google Scholar 

  34. H. J. Jeon, M. N. Kim, Int. Biodeterior. Biodegrad., 2013, 85, 289–293; DOI: https://doi.org/10.1016/j.ibiod.2013.08.013.

    Article  CAS  Google Scholar 

  35. Y. Y. Wang, H.-Y. Yu, L. Yang, S. Y. H. Abdalkarim, W.-L. Chen, Int. J. Biol. Macromol., 2019, 141, 893–905; DOI: https://doi.org/10.1016/j.ijbiomac.2019.09.062.

    Article  CAS  PubMed  Google Scholar 

  36. U. Can, C. Kaynak, J. Compos. Mater., 2020, 54, 2489–2504; DOI: https://doi.org/10.1177/0021998319899140.

    Article  CAS  Google Scholar 

  37. N. Nakayama, T. Hayashi, Polym. Degrad. Stab., 2007, 92, 1255; DOI: https://doi.org/10.1016/j.polymdegradstab.2007.03.026.

    Article  CAS  Google Scholar 

  38. C. Lantano, I. Alfieri, A. Cavazza, C. Corradini, A. Lorenzi, N. Zucchetto, A. Montenero, Food Chemistry, 2014, 165, 342–347; DOI: https://doi.org/10.1016/j.foodchem.2014.05.

    Article  CAS  PubMed  Google Scholar 

  39. P. Klinmalai, A. L. Srisa, Y. Aorenza, W. Katekhong, N. Harnkarnsujarit, LWTFood Sci. Tech., 2021, 152, 112356; DOI: https://doi.org/10.1016/j.lwt.2021.112356.

    Article  CAS  Google Scholar 

  40. H. Tsuji, Y. Echizen, Y. Nishimura, J. Polym. Environ., 2006, 14, 239; DOI: https://doi.org/10.1007/s10924-006-0023-6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Podzorova.

Additional information

No human or animal subjects were used in this research.

The authors declare no competing interests.

Based on the materials of the XVIII International Research and Development Conference “Novel Polymeric Composites. Mikitaev Readings” (July 4–9, 2022, p. Elbrus, Kabardino-Balkarian Republic, Russia).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 6, pp. 1414–1421, June, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podzorova, M.V., Selezneva, L.D. & Tertyshnaya, Y.V. Photodegradation of composites based on polylactide and polybutylene adipate terephtalate. Russ Chem Bull 72, 1414–1421 (2023). https://doi.org/10.1007/s11172-023-3916-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-3916-9

Key words

Navigation