Skip to main content
Log in

Effect of Accelerated Weathering on Physico-Mechanical Properties of Polylactide Bio-Composites

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this work, injection moulded hemp fibre reinforced polylactide bio-composites of different fibre contents (0, 10, 20 and 30 wt%) were subjected to accelerated weathering of 12 h cyclic exposures of UV-light at 60 °C, water spray and condensation at 50 °C for 8, 16, 32, 48 and 64 cycles to study the changes in properties such as crystallinity, tensile, flexural, plane-strain fracture toughness (\({K_{Ic}}\)) and strain energy release rate (\({G_{Ic}}\)). The crystallinity of neat polylactide (PLA) was found to increase up to 50.6% after 64 cycles, whereas the crystallinity of composites of different fibre contents was found to increase in the range of 30.6 to 34.5% for 8 to 64 cycles. The overall mechanical properties (tensile, flexural, \({K_{Ic}}\) and \({G_{Ic}}\)) of the composites decreased as the number of cycles increased from 8 to 64. The crystallinity and the residual tensile strength, tensile modulus, tensile strain, \({K_{Ic}}\) and \({G_{Ic}}\) of the composites of 20 wt% fibres were found to be the highest after 64 cycles. In contrast, the residual flexural strength and flexural modulus of the composites of 30 wt% fibres were found to be the maximum after 64 cycles. Absorption of water, destruction of fibre integrity, degradation of PLA matrix, formation of cracks and pores were found to be the main causes of reduction in the mechanical properties of PLA bio-composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

The datasets generated during the current study are available from the corresponding author upon request.

References

  1. Madhavan Nampoothiri K, Nair NR, John RP (2010) Bioresour Technol 101:8493–8501

    Article  CAS  PubMed  Google Scholar 

  2. Ho K-LG, Pometto AL, Hinz PN (1999) J Environ Polym Degrad 7:83–92

    Article  CAS  Google Scholar 

  3. Li S, McCarthy S (1999) Macromolecules 32:4454–4456

    Article  CAS  Google Scholar 

  4. Carrasco F, Pagès P, Gámez-Pérez J, Santana OO, Maspoch ML (2010) Polym Degrad Stabil 95:116–125

    Article  CAS  Google Scholar 

  5. Lee SH, Kim IY, Song WS (2014) Macromol Res 22:657–663

    Article  CAS  Google Scholar 

  6. Mitchell MK, Hirt DE (2015) Polym Eng Sci 55:1652–1660

    Article  CAS  Google Scholar 

  7. Xu L, Crawford K, Gorman CB (2011) Macromolecules 44:4777–4782

    Article  CAS  Google Scholar 

  8. Ndazi BS, Karlsson S (2011) eXPRESS Polym Lett 5:119–131

    Article  CAS  Google Scholar 

  9. Owen KL (2013) Control of microstructure in poly-lactic acid and the effect on biodegradation. University of Birmingham, Birmingham

    Google Scholar 

  10. Bax B, Müssig J (2008) Compos Sci Technol 68:1601–1607

    Article  CAS  Google Scholar 

  11. Plackett D, Løgstrup Andersen T, Batsberg Pedersen W, Nielsen L (2003) Compos Sci Technol 63:1287–1296

    Article  CAS  Google Scholar 

  12. Lee S-H, Ohkita T, Kitagawa K (2004) Holzforschung 58:529–536

    CAS  Google Scholar 

  13. Mathew AP, Oksman K, Sain M (2005) J Appl Polym Sci 97:2014–2025

    Article  CAS  Google Scholar 

  14. Wong S, Shanks R (2008) Compos Interfaces 15:131–145

    Article  CAS  Google Scholar 

  15. Sawpan MA, Pickering KL, Fernyhough A (2011) Composites Part A 42:310–319

    Article  CAS  Google Scholar 

  16. Pozo Morales A, Güemes A, Fernandez-Lopez A, Carcelen Valero V, De La Rosa Llano S (2017) Materials 10:1286

    Article  CAS  PubMed Central  Google Scholar 

  17. Gunti R, Prasad AVR, Gupta AVSSKS (2018) Polym Compos 39:1125–1136

    Article  CAS  Google Scholar 

  18. Asaithambi B, Ganesan G, Ananda Kumar S (2014) Fibers Polym 15:847–854

    Article  CAS  Google Scholar 

  19. Spiridon I, Darie RN, Kangas H (2016) Composites Part B 92:19–27

    Article  CAS  Google Scholar 

  20. Graupner N, Müssig J (2017) Int J Polym Sci 2017:1–10

    Article  CAS  Google Scholar 

  21. Cichorek M, Piorkowska E, Krasnikova N (2017) J Polym Environ 25:74–80

    Article  CAS  Google Scholar 

  22. Wang F, Zhou S, Yang M, Chen Z, Ran S (2018) Polymers 10:401

    Article  CAS  PubMed Central  Google Scholar 

  23. Shahruddin M, Muhamad F, Zaleha M (2017) IOP Conf Ser Mater Sci Eng 165:012021

    Article  Google Scholar 

  24. Islam MS, Pickering KL, Foreman NJ (2010) Polym Degrad Stabil 95:59–65

    Article  CAS  Google Scholar 

  25. Azwa ZN, Yousif BF, Manalo AC, Karunasena W (2013) Mater Des 47:424–442

    Article  CAS  Google Scholar 

  26. Siakeng R, Jawaid M, Ariffin H, Sapuan SM (2018) IOP Conf Ser Mater Sci Eng 290:012031

    Article  Google Scholar 

  27. Junpeng D, Hongwu W, Wuchang F, Mingyang H (2018) Polym Compos 39:E188–E199

    Article  CAS  Google Scholar 

  28. Baghaei B, Skrifvars M (2016) Composites Part A 81:139–144

    Article  CAS  Google Scholar 

  29. Fang W, Mengqing Y, Shujue Z, Siyan R, Junqian Z (2018) J Appl Polym Sci 135:46148

    Article  CAS  Google Scholar 

  30. Baghaei B, Skrifvars M, Berglin L (2013) Composites Part A 50:93–101

    Article  CAS  Google Scholar 

  31. Yu T, Ren J, Li S, Yuan H, Li Y (2010) Composites Part A 41:499–505

    Article  CAS  Google Scholar 

  32. van den Oever MJA, Beck B, Müssig J (2010) Composites Part A 41:1628–1635

    Article  CAS  Google Scholar 

  33. Baghaei B, Skrifvars M, Salehi M, Bashir T, Rissanen M et al (2014) Composites Part A 61:1–12

    Article  CAS  Google Scholar 

  34. Lee B-H, Kim H-S, Lee S, Kim H-J, Dorgan JR (2009) Compos Sci Technol 69:2573–2579

    Article  CAS  Google Scholar 

  35. Le Duigou A, Davies P, Baley C (2009) Polym Degrad Stabil 94:1151–1162

    Article  CAS  Google Scholar 

  36. Siengchin S, Dangtungee R (2013) J Thermoplas Compos Mater 26:1424–1440

    Article  CAS  Google Scholar 

  37. Gil-Castell O, Badia JD, Kittikorn T, Strömberg E, Martínez-Felipe A et al (2014) Polym Degrad Stabil 108:212–222

    Article  CAS  Google Scholar 

  38. Hu R-H, Sun M-y, Lim J-K (2010) Mater Des 31:3167–3173

    Article  CAS  Google Scholar 

  39. Kaynak C, Dogu B (2016) Int Polym Proc 31:410–422

    Article  Google Scholar 

  40. Mehta G, Mohanty AK, Drzal LT, Kamdem DP, Misra M (2006) J Polym Environ 14:359–368

    Article  CAS  Google Scholar 

  41. Beg MDH, Pickering KL (2008) Polym Degrad Stabil 93:1939–1946

    Article  CAS  Google Scholar 

  42. Pickering KL, Sawpan MA, Jayaraman J, Fernyhough A (2011) Composites Part A 42:1148–1156

    Article  CAS  Google Scholar 

  43. Mathew AP, Kristiina O, Mohini S (2006) J Appl Polym Sci 101:300–310

    Article  CAS  Google Scholar 

  44. Paul MA, Delcourt C, Alexandre M, Degée P, Monteverde F et al (2005) Polym Degrad Stabil 87:535–542

    Article  CAS  Google Scholar 

  45. Adam F, Sushant A, Rakesh G (2016) J Appl Polym Sci 133:44166

    Google Scholar 

  46. Felfel RM, Hossain KMZ, Parsons AJ, Rudd CD, Ahmed I (2015) J Mater Sci 50:3942–3955

    Article  CAS  Google Scholar 

  47. Gonzalez MF, Ruseckaite RA, Cuadrado TR (1999) J Appl Polym Sci 71:1223–1230

    Article  CAS  Google Scholar 

  48. Sawpan MA, Pickering KL, Fernyhough A (2011) Composites Part A 42:888–895

    Article  CAS  Google Scholar 

  49. Mwaikambo LY, Ansell MP (2006) J Mater Sci 41:2483–2496

    Article  CAS  Google Scholar 

  50. Moyeenuddin AS (2016) Polym Compos 37:3181–3190

    Article  CAS  Google Scholar 

  51. Tabi T, Sajo IE, Szabo F, Luyt AS, Kovacs JG (2010) eXPRESS Polym Lett 4:659–668

    Article  CAS  Google Scholar 

  52. Zhang J, Tashiro K, Tsuji H, Domb AJ (2008) Macromolecules 41:1352–1357

    Article  CAS  Google Scholar 

  53. Ass BAP, Belgacem MN, Frollini E (2006) Carbohydr Polym 63:19–29

    Article  CAS  Google Scholar 

  54. Abbate dSF, Cristina VIG, Inês BTM (2017) Polym Eng Sci 57:464–472

    Article  CAS  Google Scholar 

  55. Gardette M, Thérias S, Gardette J-L, Murariu M, Dubois P (2011) Polym Degrad Stabil 96:616–623

    Article  CAS  Google Scholar 

  56. Bocchini S, Frache A (2013) eXPRESS Polym Lett 7:431–442

    Article  CAS  Google Scholar 

  57. Elsawy MA, Kim K-H, Park J-W, Deep A (2017) Renew Sust Energ Rev 79:1346–1352

    Article  CAS  Google Scholar 

  58. Hakkarainen M, Albertsson A-C, Karlsson S (1996) Polym Degrad Stabil 52:283–291

    Article  CAS  Google Scholar 

  59. Renouf-Glauser AC, Rose J, Farrar DF, Cameron RE (2005) Biomaterials 26:5771–5782

    Article  CAS  PubMed  Google Scholar 

  60. Chaochanchaikul K, Jayaraman K, Rosarpitak V, Sombatsompop PDN (2011) Bioresources 7:38–55

    Google Scholar 

  61. Santos RB, Hart P, Jameel H, Chang H-m (2013) Bioresources 8:1478–1507

    Google Scholar 

  62. Delabarde C, Plummer CJG, Bourban P-E, Månson J-AE (2011) Polym Degrad Stabil 96:595–607

    Article  CAS  Google Scholar 

  63. Guralp O, Sebnem K (2009) J Appl Polym Sci 114:2481–2487

    Article  CAS  Google Scholar 

  64. Sair S, Oushabi A, Kammouni A, Tanane O, Abboud Y et al (2018) Case Stud Constr Mater 8:203–212

    Article  Google Scholar 

  65. Thwe MM, Liao K (2003) Compos Sci Technol 63:375–387

    Article  CAS  Google Scholar 

  66. Sawpan MA, Pickering KL, Fernyhough A (2012) Composites Part A 43:519–526

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moyeenuddin Ahmad Sawpan.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad Sawpan, M., Islam, M.R., Beg, M.D.H. et al. Effect of Accelerated Weathering on Physico-Mechanical Properties of Polylactide Bio-Composites. J Polym Environ 27, 942–955 (2019). https://doi.org/10.1007/s10924-019-01405-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01405-2

Keywords

Navigation