Skip to main content
Log in

Adsorption of salicylic acid on modified active carbon from an aqueous medium

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The adsorption of salicylic acid on active carbon samples containing iron compounds that endow the carbons with magnetic properties was studied. These properties markedly facilitate the phase separation process after adsorption. Although the adsorption capacity of iron-modified samples somewhat decreased, they still had sufficient adsorption capacity to be used for waste water treatment to remove salicylic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Botero-Coy, D. Martínez-Pach’on, C. Boix, R. J. Rinc’on, N. Castillo, L. P. Arias-Marín, L. Manrique-Losada, R. Torres-Palma, A. Moncayo-Lasso, F. Hern’andez, Sci. Total Environ., 2018, 642, 842; DOI: https://doi.org/10.1016/j.scitotenv.2018.06.088.

    Article  CAS  PubMed  Google Scholar 

  2. M. Brumovský, J. Becanova, J. Kohoutek, M. Borghini, L. Nizzetto, Environ. Pollut., 2017, 229, 976; DOI: https://doi.org/10.1016/j.envpol.2017.07.082.

    Article  PubMed  Google Scholar 

  3. L. He, X. Sun, F. Zhu, S. Ren, S. Wang, Sci. Total Environ., 2017, 592, 33; DOI: https://doi.org/10.1016/j.scitotenv.2017.03.041.

    Article  CAS  PubMed  Google Scholar 

  4. L. Santamaría, M. A. Vicente, S. A. Korili, A. Gil, Environ. Technol., 2020, 41, 2073; DOI: https://doi.org/10.1080/09593330.2018.1555285.

    Article  PubMed  Google Scholar 

  5. N. Taoufik, A. Elmchaouri, S. E. Mahmoudi, S. A. Korili, A. Gil, Environ. Nanotech., Monitor. Manag., 2021, 15, 100448; DOI: https://doi.org/10.1016/j.enmm.2021.100448.

    CAS  Google Scholar 

  6. T. H. Ngo, D.-A. Van, H. Le Tran, N. Nakada, H. Tanaka, T. H. Huynh, Environ. Sci. Pollut. Res., 2021, 28, 12082; DOI: https://doi.org/10.1007/s11356-020-09195-0.

    Article  CAS  Google Scholar 

  7. A. Gosset, L. Wiest, A. Fildier, C. Libert, B. Giroud, M. Hammada, M. Hervé, E. Sibeud, E. Vulliet, P. Polomé, Y. Perrodin, Sci. Tot. Environ., 2021, 778, 146275; DOI: https://doi.org/10.1016/j.scitotenv.2021.146275.

    Article  CAS  Google Scholar 

  8. M. D. Vedenyapina, A. Yu. Kurmysheva, A. K. Rakishev, Yu. G. Kryazhev, Solid Fuel Chem., 2019, 53, 382; DOI: https://doi.org/10.3103/S0361521919070061.

    Article  CAS  Google Scholar 

  9. R. Hu, L. Zhang, J. Hu, Chemosphere, 2016, 153, 394; DOI: https://doi.org/10.1016/j.chemosphere.2016.03.074.

    Article  CAS  PubMed  Google Scholar 

  10. A. Rempel, J. P. Gutkoski, M. T. Nazari, G. N. Biolchi, V. A. F. Cavanhi, H. Treichel, L. M. Colla, Sci. Tot. Environ., 2021, 772, 144918; DOI: https://doi.org/10.1016/j.scitotenv.2020.144918.

    Article  CAS  Google Scholar 

  11. F. Ozyonar, Int. J. Electrochem. Sci., 2016, 11, 3680; DOI: https://doi.org/10.20964/110454.

    Article  CAS  Google Scholar 

  12. A. Peter, A. Mihaly-Cozmuta, C. Nicula, L. Mihaly-Cozmuta, A. Jastrzębska, A. Olszyna, L. Baia, Water Air Soil Pollut., 2017, 228, 41; DOI: https://doi.org/10.1007/s11270-016-3226-z.

    Article  Google Scholar 

  13. G. Xiao, R. Wen, A. Liu, G. He, D. Wu, J. Hazard. Mater., 2017, 329, 77; DOI: https://doi.org/10.1016/j.jhazmat.2017.01.030.

    Article  CAS  PubMed  Google Scholar 

  14. S. A. Carmalin, E. C. Lima, Ecotoxicol. Environ. Safe, 2018, 150, 1; DOI: https://doi.org/10.1016/j.ecoenv.2017.12.026.

    Article  Google Scholar 

  15. J. Lladó, M. Solé-Sardans, C. Lao-Luque, E. Fuente, B. Ruiz, Proc. Safe. Environ. Protect., 2016, 104, 294; DOI: https://doi.org/10.1016/j.psep.2016.09.009.

    Article  Google Scholar 

  16. V. Rakić, V. Rac, M. Krmar, O. Otman, A. Auroux, J. Hazard. Mater., 2015, 282, 141; DOI: https://doi.org/10.1016/j.jhazmat.2014.04.062.

    Article  PubMed  Google Scholar 

  17. M. D. Vedenyapina, A. K. Rakishev, D. E. Tsaplin, A. A. Vedenyapin, A. L. Lapidus, Solid Fuel Chem., 2018, 52, 179; DOI: https://doi.org/10.3103/S0361521918030126.

    Article  CAS  Google Scholar 

  18. A. K. Rakishev, M. D. Vedenyapina, S. A. Kulaishin, D. V. Kurilov, Solid Fuel Chem., 2021, 55, 117; DOI: https://doi.org/10.3103/s0361521921020063.

    Article  CAS  Google Scholar 

  19. K. R. Thines, E. C. Abdullah, N. M. Mubarak, M. Ruthiraan, Renew. Sustain. Energy Rev., 2017, 67, 257; DOI: https://doi.org/10.1016/j.rser.2016.09.057.

    Article  CAS  Google Scholar 

  20. P. Rai, K. P. Singh, J. Environ. Manag., 2018, 207, 249; DOI: https://doi.org/10.1016/j.jenvman.2017.11.047.

    Article  CAS  Google Scholar 

  21. J. Ifthikar, J. Wang, Q. Wang, T. Wang, H. Wang, A. Khan, A. Jawad, T. Sun, X. Jiao, Z. Chen, Biores. Technol., 2017, 238, 399; DOI: https://doi.org/10.1016/j.biortech.2017.03.133.

    Article  CAS  Google Scholar 

  22. F. Reguyal, A. K. Sarmah, Environ. Pollut., 2017, 233, 510; DOI: https://doi.org/10.1016/j.envpol.2017.09.076.

    Article  PubMed  Google Scholar 

  23. M. T. H. Siddiqui, S. Nizamuddin, H. A. Baloch, N. M. Mubarak, M. Al-Ali, S. A. Mazari, A. W. Bhutto, R. Abro, M. Srinivasan, G. Griffin, J. Environ. Chem. Eng., 2019, 7, 102812; DOI: https://doi.org/10.1016/j.jece.2018.102812.

    Article  CAS  Google Scholar 

  24. S. E. Lyubimov, M. V. Sokolovskaya, P. V. Zhemchugov, L. A. Pavlova, S. P. Kutumov, V. A. Davankov, Russ. Chem. Bull., 2020, 69, 712; DOI: https://doi.org/10.1007/s11172-020-2822-7.

    Article  CAS  Google Scholar 

  25. L. Zhou, J. Ma, Z. He, Y. Shao, Y. Li, Appl. Surf. Sci., 2015, 324, 490; DOI: https://doi.org/10.1016/j.apsusc.2014.10.152.

    Article  CAS  Google Scholar 

  26. X. Li, W.-c. Cao, Y.-g. Liu, G.-m. Zeng, W. Zeng, L. Qin, T.-t. Li, ACS Sustain. Chem.Eng., 2016, 5, 179; DOI: https://doi.org/10.1021/acssuschemeng.6b01207.

    Article  Google Scholar 

  27. A. R. Bagheri, M. Ghaedi, A. Asfaram, A. A. Bazrafshan, R. Jannesar, Ultrason. Sonochem., 2017, 34, 294; DOI: https://doi.org/10.1016/j.ultsonch.2016.05.047.

    Article  CAS  PubMed  Google Scholar 

  28. D. Bhatia, D. Datta, A. Joshi, S. Gupta, Y. Gote, J. Chem. Eng. Data., 2018, 63, 436; DOI: https://doi.org/10.1021/acs.jced.7b00881.

    Article  CAS  Google Scholar 

  29. M. Y. Badi, A. Azari, H. Pasalari, A. Esrafili, M. Farzadkia, J. Mol. Liq., 2018, 261, 146; DOI: https://doi.org/10.1016/j.molliq.2018.04.019.

    Article  Google Scholar 

  30. K.-W. Jung, B. H. Choi, K. G. Song, J.-W. Choi, Chemosphere, 2019, 215, 432; DOI: https://doi.org/10.1016/j.chemosphere.2018.10.069.

    Article  CAS  PubMed  Google Scholar 

  31. L. S. Rocha, D. Pereira, É. Sousa, M. Otero, V. I. Esteves, V. Calisto, Sci. Total Environ., 2020, 718, 137272; DOI: https://doi.org/10.1016/j.scitotenv.2020.137272.

    Article  CAS  PubMed  Google Scholar 

  32. ACD/Labs, Advanced Chemistry Development, Inc., Toronto (Canada), 2022.

  33. E. P. Serjeant, B. Dempsey, Ionisation Constants of Organic Acids in Aqueous Solution, Pergamon Press, Oxford, 1979, 989 pp.

    Google Scholar 

  34. B. P. Nikol’skii, V. A. Rabinovich, Spravochnik Khimika. Tom 2. Osnovnye Svoistva Neorganicheskikh i Organicheskikh Soedinenii [Chemist’s Handbook. Vol. 2. Main Properties of Inorganic and Organic Compounds], Khimiya, Moscow—Leningrad, 1964, 1162 pp. (in Russian).

    Google Scholar 

  35. S.-Y. Gu, C.-T. Hsieh, Y. A. Gandomi, Z.-F. Yang, L. Li, C.-C. Fu, R.-S. Juang, J. Mol. Liq., 2019, 277, 499; DOI: https://doi.org/10.1016/j.molliq.2018.12.018.

    Article  CAS  Google Scholar 

  36. A. A. Sandulyak, M. N. Polismakova, D. O. Kiselev, D. A. Sandulyak, A. V. Sandulyak, Fine Chemical Technologies, 2017, 12, 58; DOI: https://doi.org/10.32362/2410-6593-2017-12-3-58-64.

    Article  CAS  Google Scholar 

  37. M. K. Miyittah, F. W. Tsyawo, K. K. Kumah, C. D. Stanley, J. E. Rechcigl, Commun. Soil Sci. Plan., 2016, 47, 101; DOI: https://doi.org/10.1080/00103624.2015.1108434.

    Article  CAS  Google Scholar 

  38. A. K. Mosai, L. Chimuka, E. M. Cukrowska, I. A. Kotzé, H. Tutu, Water Air Soil Pollut., 2019, 230, 188; DOI: https://doi.org/10.1007/s11270-019-4236-4.

    Article  Google Scholar 

  39. M. M. Dávila-Jiménez, M. P. Elizalde-González, M. A. Guerrero-Morales, J. Mattusch, Process. Saf. Environ. Protect., 2018, 120, 195; DOI: https://doi.org/10.1016/j.psep.2018.09.012.

    Article  Google Scholar 

  40. V. V. Kachala, L. L. Khemchyan, A. S. Kashin, N. V. Orlov, A. A. Grachev, S. S. Zalesskiy, V. P. Ananikov, Russ. Chem. Rev., 2013, 82, 648; DOI: https://doi.org/10.1070/RC2013v082n07ABEH004413.

    Article  Google Scholar 

  41. A. S. Kashin, V. P. Ananikov, Russ. Chem. Bull., 2011, 60, 2602; DOI: https://doi.org/10.1007/s11172-011-0399-x.

    Article  CAS  Google Scholar 

  42. M. D. Donohue, G. L. Aranovich, Fluid Ph. Equilibria, 1999, 158–160, 557; DOI: https://doi.org/10.1016/S0378-3812(99)00074-6.

    Article  Google Scholar 

  43. K. S. W. Sing, Pure Appl. Chem., 1982, 54, 2201; DOI:https://doi.org/10.1351/pac198254112201.

    Article  Google Scholar 

  44. W. D. Oh, S.-K. Lua, Z. Dong, T.-T. Lim, J. Hazard. Mater., 2015, 284, 1; DOI: https://doi.org/10.1016/j.jhazmat.2014.10.042.

    Article  CAS  PubMed  Google Scholar 

  45. S. Saleh, K. B. Kamarudin, W. A. W. A. K. Ghani, L. S. Kheang, Proc. Eng., 2016, 148, 228; DOI: https://doi.org/10.1016/j.proeng.2016.06.590.

    Article  CAS  Google Scholar 

  46. V. V. Pan’kov, M. I. Ivanovskaya, D. A. Kotikov, in Khimicheskie Problemy Sozdaniya Novykh Materialov i Tekhnologii [Chemical Problems of Development of New Materials and Technologies], Ed. O. A. Ivashkevich, BGU, Minsk, 2008, 24 pp. (in Russian).

  47. M. Essandoh, B. Kunwar, C. U. Pittman, D. Mohan, T. Mlsna, Chem. Eng. J., 2015, 265, 219; DOI: https://doi.org/10.1016/j.cej.2014.12.

    Article  CAS  Google Scholar 

  48. V. I. Isaeva, S. A. Kulaishin, M. D. Vedenyapina, V. V. Chernyshev, G. I. Kapustin, V. V. Vergun, L. M. Kustov, Russ. Chem. Bull., 2021, 70, 67; DOI: https://doi.org/10.1007/s11172-021-3058-x.

    Article  CAS  Google Scholar 

  49. T. Shahvan, Chem. Eng. Res. Des., 2015, 96, 172; DOI: https://doi.org/10.1016/j.cherd.2015.03.001.

    Article  Google Scholar 

  50. T. Shahvan, J. Environ. Chem. Eng. 2014, 2, 1001; DOI: https://doi.org/10.1016/j.jece.2014.03.020.

    Article  Google Scholar 

  51. M. D. Vedenyapina, A. Yu. Kurmysheva, Yu. G. Kryazhev, V. A. Ershova, Solid Fuel Chem., 2021, 55, 285; DOI: https://doi.org/10.3103/S0361521921050074.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Vedenyapina.

Additional information

The authors are grateful to the Department of Structural Studies of the N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences (ZIOC RAS) for sample examination by electron microscopy and the Center for Advanced Catalytic Technologies (ZIOC RAS) for studying the textural characteristics of the samples.

No human or animal subjects were used in this research.

The authors declare no competing interests.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 5, pp. 1099–1106, May, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vedenyapina, M.D., Kulayshin, S.A., Kurmysheva, A.Y. et al. Adsorption of salicylic acid on modified active carbon from an aqueous medium. Russ Chem Bull 72, 1099–1106 (2023). https://doi.org/10.1007/s11172-023-3877-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-3877-z

Key words

Navigation