Skip to main content
Log in

Microwave synthesis of nanosized iron-containing oxide particles and their physicochemical properties

  • Reviews
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Methods for the synthesis of iron oxide nanoparticles with various modifications (magnetite, maghemite, hematite) and iron-containing nanoparticles with perovskite structure are considered. Particular attention is paid to the method based on the use of microwave radiation, as the most efficient, low-energy method, resulting in the preparation of nanoparticles with a narrow size distribution and a small particle size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Nanochemistry: From Theory to Application for In-Depth Understanding of Nanomaterials, Walter de Gruyter GmbH, Berlin-Boston, 2023; DOI: https://doi.org/10.1515/9783110739879.

  2. M. Konsolakis, ACS Catal., 2015, 5, 6397; DOI: https://doi.org/10.1021/acscatal.5b01605.

    Article  CAS  Google Scholar 

  3. Z. Liu, F. He, L. Ma, S. Peng, Catal. Surveys from Asia, 2016, 20, 121; DOI: https://doi.org/10.1007/s10563-016-9213-y.

    Article  CAS  Google Scholar 

  4. S. C. N. Tang, I. M. C. Lo, Water Res., 2013, 47, 2613; DOI: https://doi.org/10.1016/j.watres.2013.02.039.

    Article  CAS  PubMed  Google Scholar 

  5. S. Giannakis, Appl. Catal. B: Environmental, 2019, 248, 309; DOI: https://doi.org/10.1016/j.apcatb.2019.02.025.

    Article  CAS  Google Scholar 

  6. Y. L. Pang, S. Lim, H. C. Ong, W. T. Chong, Ceram. Intern., 2016, 42, 9; DOI: 10.1016%2Fj.ceramint.2015.08.144.

    Article  CAS  Google Scholar 

  7. N. Labhasetwar, G. Saravanan, S. Kumar Megarajan, N. Manwar, R. Khobragade, P. Doggali, F. Grasset, Sci. Technol. Adv. Mater., 2015, 16, 036002; DOI: https://doi.org/10.1088/1468-6996/16/3/036002.

    Article  PubMed  PubMed Central  Google Scholar 

  8. X. Huang, G. Zhao, G. Wang, J. T. S. Irvine, Chem. Sci., 2018, 9, 3623; DOI: https://doi.org/10.1039/C7SC03920D.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. S. Royer, D. Duprez, F. Can, X. Courtois, C. Batiot-Dupeyrat, S. Laassiri, H. Alamdari, Chem. Rev., 2014, 114, 10292; DOI: https://doi.org/10.1021/cr500032a.

    Article  CAS  PubMed  Google Scholar 

  10. M. A. Peña, J. L. G. Fierro, Chem. Rev., 2001, 101, 1981; DOI: https://doi.org/10.1021/cr980129f.

    Article  PubMed  Google Scholar 

  11. R. K. Sharma, S. Dutta, S. Sharma, R. Zboril, R. S. Varma, M. B. Gawande, Green Chem., 2016, 18, 3184; DOI: https://doi.org/10.1039/C6GC00864J.

    Article  CAS  Google Scholar 

  12. M. B. Schütz, L. Xiao, T. Lehnen, T. Fischer, S. Mathur, Int. Mater. Rev., 2018, 63, 341; DOI: https://doi.org/10.1080/09506608.2017.1402158.

    Article  Google Scholar 

  13. G. S. Parkinson, Surf. Sci. Rep., 2016, 71, 272; DOI: https://doi.org/10.1016/j.surfrep.2016.02.001.

    Article  CAS  Google Scholar 

  14. R. M. Cornell, U. Schertmann, The Iron Oxides: Structure, Properties, Occurrences and Uses, 2nd ed., John Wiley & Sons, London, 2003, 664 pp.

    Book  Google Scholar 

  15. W. H. Bragg, The London, Edinburgh, and Dublin Philosoph. Mag. J. Sci., 1915, 30, 305; DOI: https://doi.org/10.1080/14786440808635400.

    Article  CAS  Google Scholar 

  16. G. Hägg, Nature, 1935, 135, 874; DOI: https://doi.org/10.1038/135874b0.

    Article  Google Scholar 

  17. K. K. Kefeni, T. A. M. Msagati, B. B. Mamba, Mater. Sci. Eng.: B, 201, 215, 37; DOI: https://doi.org/10.1016/j.mseb.2016.11.002.

  18. S. Kubickova, J. Vejpravova, P. Holec, D. Niznansky, J. Magnetism Magnetic Mater., 2013, 334, 102; DOI: https://doi.org/10.1016/j.jmmm.2013.01.005.

    Article  CAS  Google Scholar 

  19. S. Tanaka, Y. V. Kaneti, N. L. W. Septiani, S. X. Dou, Y. Bando, M. S. A. Hossain, J. Kim, Y. Yamauchi, Small Methods, 2019, 3, 1800512; DOI: https://doi.org/10.1002/smtd.201800512.

    Article  Google Scholar 

  20. Z. Li, W. Zhang, C. Yuan, Y. Su, RSC Adv., 2017, 7, 12931; DOI: https://doi.org/10.1039/C6RA27423D.

    Article  CAS  Google Scholar 

  21. J.-J. Xu, Z.-L. Wang, D. Xu, F.-Z. Meng, X.-B. Zhang, Energy Environ. Sci., 2014, 7, 2213; DOI: https://doi.org/10.1039/C3EE42934B.

    Article  CAS  Google Scholar 

  22. T. Prasankumar, B. R. Wiston, C. R. Gautam, R. Ilangovan, S. P. Jose, J. Alloys Comp., 2018, 757, 466; DOI: https://doi.org/10.1016/j.jallcom.2018.05.108.

    Article  CAS  Google Scholar 

  23. W. Ling, M. Wang, C. Xiong, D. Xie, Q. Chen, X. Chu, X. Qiu, Y. Li, X. Xiao, J. Mater. Res., 2019, 34, 1828; DOI: https://doi.org/10.1557/jmr.2019.129.

    Article  CAS  Google Scholar 

  24. M. Hasanzadeh, N. Shadjou, M. de la Guardia, TrAC Trends Analyt. Chem., 2015, 72, 1; DOI: https://doi.org/10.1016/j.trac.2015.03.016.

    Article  CAS  Google Scholar 

  25. R. A. Ismail, G. M. Sulaiman, S. A. Abdulrahman, T. R. Marzoog, Mater. Sci. Eng.: C, 2015, 53, 286; DOI: https://doi.org/10.1016/j.msec.2015.04.047.

    Article  CAS  Google Scholar 

  26. W. Lu, M. Ling, M. Jia, P. Huang, C. Li, B. Yan, Mol. Med. Rep., 2014, 9, 1080; DOI: https://doi.org/10.3892/mmr.2014.1906.

    Article  CAS  PubMed  Google Scholar 

  27. H. Xu, Z. P. Aguilar, L. Yang, M. Kuang, H. Duan, Y. Xiong, H. Wei, A. Wang, Biomater., 2011, 32, 9758; DOI: https://doi.org/10.1016/j.biomaterials.2011.08.076.

    Article  CAS  Google Scholar 

  28. A. Zengin, E. Yildirim, U. Tamer, T. Caykara, The Analyst, 2013, 138, 7238; DOI: https://doi.org/10.1039/C3AN01458D.

    Article  CAS  PubMed  Google Scholar 

  29. R. Riahi, A. Tamayol, S. A. M. Shaegh, A. M. Ghaemmaghami, M. R. Dokmeci, A. Khademhosseini, Current Opinion Chem. Eng., 2015, 7, 101; DOI: https://doi.org/10.1016/j.coche.2014.12.001.

    Article  Google Scholar 

  30. L. A. Thomas, L. Dekker, M. Kallumadil, P. Southern, M. Wilson, S. P. Nair, Q. A. Pankhurst, I. P. Parkin, J. Mater. Chem., 2009, 19, 6529; DOI: https://doi.org/10.1039/B908187A.

    Article  CAS  Google Scholar 

  31. M. Iv, N. Telischak, D. Feng, S. J. Holdsworth, K. W. Yeom, H. E. Daldrup-Link, Nanomedicine, 2015, 10, 993; DOI: https://doi.org/10.2217/nnm.14.203.

    Article  CAS  PubMed  Google Scholar 

  32. J. Hu, I. M. C. Lo, G. Chen, Water Sci. Technol., 2004, 50, 139; DOI: https://doi.org/10.2166/wst.2004.0706.

    Article  CAS  PubMed  Google Scholar 

  33. J. Hu, G. Chen, I. M. C. Lo, J. Environ. Eng., 2006, 132, 709; DOI: https://doi.org/10.1061/(ASCE)0733-9372(2006)132:7(709).

    Article  CAS  Google Scholar 

  34. W. Yantasee, C. L. Warner, T. Sangvanich, R. S. Addleman, T. G. Carter, R. J. Wiacek, G. E. Fryxell, C. Timchalk, M. G. Warner, Environ. Sci. Technol., 2007, 41, 5114; DOI: https://doi.org/10.1021/es0705238.

    Article  CAS  PubMed  Google Scholar 

  35. I. de Vicente, A. Merino-Martos, L. Cruz-Pizarro, J. de Vicente, J. Hazard. Mater., 2010, 181, 375; DOI: https://doi.org/10.1016/j.jhazmat.2010.05.020.

    Article  CAS  PubMed  Google Scholar 

  36. C. Hoffmann, M. Franzreb, IEEE Trans. Magnetics, 2004, 40, 456; DOI: https://doi.org/10.1016/j.jhazmat.2010.05.020.

    Article  Google Scholar 

  37. C. Hoffmann, M. Franzreb, IEEE Trans. Magnetics, 2004, 40, 462; DOI: https://doi.org/10.1109/TMAG.2004.824121.

    Article  Google Scholar 

  38. S. Singh, K. C. Barick, D. Bahadur, J. Hazard. Mater., 2011, 192, 1539; DOI: https://doi.org/10.1016/j.jhazmat.2011.06.074.

    Article  CAS  PubMed  Google Scholar 

  39. L. Feng, M. Cao, X. Ma, Y. Zhu, C. Hu, J. Hazard. Mater., 2012, 217–218, 439; DOI: https://doi.org/10.1016/j.jhazmat.2012.03.073.

    Article  PubMed  Google Scholar 

  40. D. Lee, J. Lee, H. Lee, S. Jin, T. Hyeon, B. M. Kim, Adv. Synth. Catal., 2006, 348, 41; DOI: https://doi.org/10.1002/adsc.200505354.

    Article  CAS  Google Scholar 

  41. M.-J. Jin, D.-H. Lee, Angew. Chem., Int. Ed., 2010, 49, 1119; DOI: https://doi.org/10.1002/anie.200905626.

    Article  CAS  Google Scholar 

  42. F. Kalantari, A. Ramazani, M. R. P. Heravi, Current Org. Chem., 2019, 23, 136; DOI: https://doi.org/10.2174/1385272823666190206142328.

    Article  CAS  Google Scholar 

  43. D. Enders, O. Niemeier, A. Henseler, Chem. Rev., 2007, 107, 5606–5655; DOI: https://doi.org/10.1021/cr068372z.

    Article  CAS  PubMed  Google Scholar 

  44. O. Tursunov, L. Kustov, A. Kustov, Oil Gas Sci. Technol., 2017, 72, 30; DOI: https://doi.org/10.2516/ogst/2017027.

    Article  Google Scholar 

  45. W. Ma, G. Jacobs, D. E. Sparks, B. Todic, D. B. Bukur, B. H. Davis, Catal. Today, 2019, 343, 125; DOI: https://doi.org/10.1016/j.cattod.2019.04.011.

    Article  Google Scholar 

  46. E. de Smit, B. M. Weckhuysen, Chem. Soc. Rev., 2008, 37, 2758; DOI: https://doi.org/10.1039/B805427D.

    Article  CAS  PubMed  Google Scholar 

  47. H. M. Torres Galvis, K. P. de Jong, ACS Catal., 2013, 3, 2130; DOI: https://doi.org/10.1021/cs4003436.

    Article  CAS  Google Scholar 

  48. M. Zhu, I. E. Wachs, ACS Catal., 2016, 6, 722; DOI: https://doi.org/10.1021/acscatal.5b02594.

    Article  CAS  Google Scholar 

  49. J. C. Vedrine, J. Energy Chem., 2016, 25, 936; DOI: https://doi.org/10.1016/j.jechem.2016.10.007.

    Article  Google Scholar 

  50. S. Theofanidis, V. Galvita, C. Konstantopoulos, H. Poelman, G. Marin, Materials, 2018, 11, 831; DOI: https://doi.org/10.3390/ma11050831.

    Article  PubMed  PubMed Central  Google Scholar 

  51. P. Belleville, J.-P. Jolivet, E. Tronc, J. Livage, J. Colloid Interface Sci., 1992, 150, 453; DOI: https://doi.org/10.1016/0021-9797(92)90214-7.

    Article  CAS  Google Scholar 

  52. L. Mohammed, H. G. Gomaa, D. Ragab, J. Zhu, Particuology, 2017, 30, 1; DOI: https://doi.org/10.1016/j.partic.2016.06.001.

    Article  CAS  Google Scholar 

  53. I. Wysocka, E. Kowalska, K. Trzciński, M. Łapiński, G. Nowaczyk, A. Zielińska-Jurek, Nanomater., 2018, 8, 28; DOI: https://doi.org/10.3390/nano8010028.

    Article  Google Scholar 

  54. A. Banazadeh, H. Salimi, M. Khaleghi, S. Shafiei-Haghighi, J. Environ. Chem. Eng., 2016, 4, 2178; DOI: https://doi.org/10.1016/j.jece.2015.09.007.

    Article  CAS  Google Scholar 

  55. R. Sharifi, A. H. Hassani, H. Ahmad Panahi, M. Borghei, Micro Nano Lett., 2018, 13, 436; DOI: https://doi.org/10.1049/mnl.2016.0727.

    Article  CAS  Google Scholar 

  56. Y. Xing, X.-H. Bai, M.-L. Peng, X.-R. Ma, N. Buske, Y.-L. Cui, Nano, 2019, 14, 1950122; DOI: https://doi.org/10.1142/S1793292019501224.

    Article  CAS  Google Scholar 

  57. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Van der Elst, R. N. Muller, Chem. Rev., 2008, 108, 2064; DOI: https://doi.org/10.1021/cr068445e.

    Article  CAS  PubMed  Google Scholar 

  58. E. Alp, N. Aydogan, Colloids Surf. A: Physicochem. Eng. Aspects, 2016, 510, 205; DOI: https://doi.org/10.1016/j.colsurfa.2016.06.033.

    Article  CAS  Google Scholar 

  59. O. Karaagac, H. Kockar, J. Magnetism Magnetic Mater., 2016, 409, 116; DOI: https://doi.org/10.1016/j.jmmm.2016.02.076.

    Article  CAS  Google Scholar 

  60. S. Alibeigi, M. R. Vaezi, Chem. Eng. Technol., 2008, 31, 1591; DOI: https://doi.org/10.1002/ceat.200800093.

    Article  CAS  Google Scholar 

  61. N. Saxena, M. Singh, J. Magnetism Magnetic Mater., 2017, 429, 166; DOI: https://doi.org/10.1016/j.jmmm.2017.01.031.

    Article  CAS  Google Scholar 

  62. M. P. Morales, S. Veintemillas-Verdaguer, M. I. Montero, C. J. Serna, A. Roig, L. Casas, B. Martínez, F. Sandiumenge, Chem. Mater., 1999, 11, 3058; DOI: https://doi.org/10.1021/CM991018F.

    Article  CAS  Google Scholar 

  63. J. Govan, Y. Gun’ko, Nanomater., 2014, 4, 222; DOI: https://doi.org/10.3390/nano4020222.

    Article  Google Scholar 

  64. T. Ahn, J. H. Kim, H.-M. Yang, J. W. Lee, J.-D. Kim, J. Phys. Chem. C, 2012, 116, 6069; DOI: https://doi.org/10.1021/jp211843g.

    Article  CAS  Google Scholar 

  65. V. K. LaMer, R. H. Dinegar, J. Am. Chem. Soc., 1950, 72, 4847; DOI: https://doi.org/10.1021/ja01167a001.

    Article  CAS  Google Scholar 

  66. O. A. Noqta, A. A. Aziz, I. A. Usman, M. Bououdina, J. Superconductivity Novel Magnetism, 2019, 32, 779; DOI: https://doi.org/10.1007/s10948-018-4939-6.

    Article  CAS  Google Scholar 

  67. P. Singh, C. Upadhyay, AIP Conf. Proc., 2018, 030051; DOI: https://doi.org/10.1063/1.5032386.

  68. S. Palanisamy, Y.-M. Wang, Dalton Trans., 2019, 48, 9490; DOI: https://doi.org/10.1039/C9DT00459A.

    Article  CAS  PubMed  Google Scholar 

  69. D. Caruntu, G. Caruntu, C. J. O’Connor, J. Phys. D: Appl. Phys., 2007, 40, 5801; DOI: https://doi.org/10.1088/00223727/40/19/001.

    Article  CAS  Google Scholar 

  70. S. Sathish, S. Balakumar, Mater. Chem. Phys., 2016, 173, 364; DOI: https://doi.org/10.1016/j.matchemphys.2016.02.024.

    Article  CAS  Google Scholar 

  71. Y. Fei, M. Iqbal, S. D. Kong, Z. Xue, C. P. McFadden, J. L. Guillet, L. H. Doerrer, E. E. Alp, W. Bi, Y. Lu, C. B. Dandamudi, P. J. Ranganath, K. J. Javier, M. Ahmadian, C. J. Ellison, K. P. Johnston, Langmuir, 2018, 34, 622; DOI: https://doi.org/10.1021/acs.langmuir.7b03702.

    Article  CAS  PubMed  Google Scholar 

  72. S. Majidi, F. Zeinali Sehrig, S. M. Farkhani, M. Soleymani Goloujeh, A. Akbarzadeh, Artificial Cells, Nanomedicine, Biotechnol., 2016, 44, 722; DOI: https://doi.org/10.3109/21691401.2014.982802.

    Article  CAS  Google Scholar 

  73. J. Wan, R. Yuan, C. Zhang, N. Wu, F. Yan, S. Yu, K. Chen, J. Phys. Chem. C, 2016, 120, 23799; DOI: https://doi.org/10.1021/acs.jpcc.6b06614.

    Article  CAS  Google Scholar 

  74. V. Patsula, L. Kosinová, M. Lovrić, L. Ferhatovic Hamzić, M. Rabyk, R. Konefal, A. Paruzel, M. Šlouf, V. Herynek, S. Gajović, D. Horák, ACS Appl. Mater. Interfaces, 2016, 8, 7238; DOI: https://doi.org/10.1021/acsami.5b12720.

    Article  CAS  PubMed  Google Scholar 

  75. S. Munjal, N. Khare, J. Nanoparticle Res., 2017, 19, 18; DOI: https://doi.org/10.1007/s11051-016-3700-y.

    Article  Google Scholar 

  76. G. Muscas, G. Concas, C. Cannas, A. Musinu, A. Ardu, F. Orrù, D. Fiorani, S. Laureti, D. Rinaldi, G. Piccaluga, D. Peddis, J. Phys. Chem. C, 2013, 117, 23378; DOI: https://doi.org/10.1021/jp407863s.

    Article  CAS  Google Scholar 

  77. J. Yang, Q. Kou, Y. Liu, D. Wang, Z. Lu, L. Chen, Y. Zhang, Y. Wang, Y. Zhang, D. Han, S. G. Xing, Powder Technol., 2017, 319, 53; DOI: https://doi.org/10.1016/j.powtec.2017.06.042.

    Article  Google Scholar 

  78. P. Guardia, A. Labarta, X. Batlle, J. Phys. Chem. C, 2011, 115, 390; DOI: https://doi.org/10.1021/jp1084982.

    Article  CAS  Google Scholar 

  79. D. Wang, P. Yang, Y. Zhu, Mater. Res. Bull., 2014, 49, 514; DOI: https://doi.org/10.1016/j.materresbull.2013.09.019.

    Article  CAS  Google Scholar 

  80. F. Hu, K. W. MacRenaris, E. A. Waters, T. Liang, E. A. Schultz-Sikma, A. L. Eckermann, T. J. Meade, J. Phys. Chem. C, 2009, 113, 20855; DOI: https://doi.org/10.1021/jp907216g.

    Article  CAS  Google Scholar 

  81. S. Ge, X. Shi, K. Sun, C. Li, C. Uher, J. R. Baker, M. M. Banaszak Holl, B. G. Orr, J. Phys. Chem. C, 2009, 113, 13593; DOI: https://doi.org/10.1021/jp902953t.

    Article  CAS  Google Scholar 

  82. Z. Stojanović, M. Otoničar, J. Lee, M. M. Stevanović, M. P. Hwang, K. H. Lee, J. Choi, D. Uskoković, Colloids Surf. B: Biointerfaces, 2013, 109, 236; DOI: https://doi.org/10.1016/j.colsurfb.2013.03.053.

    Article  PubMed  Google Scholar 

  83. A. A. Hernández-Hernández, G. A. Álvarez-Romero, A. Castañeda-Ovando, Y. Mendoza-Tolentino, E. Contreras-López, C. A. Galán-Vidal, M. E. Páez-Hernández, Mater. Chem. Phys., 2018, 205, 113; DOI: https://doi.org/10.1016/j.matchemphys.2017.11.009.

    Article  Google Scholar 

  84. X. Sun, Z. Liu, H. Yu, Z. Zheng, D. Zeng, Mater. Lett., 2018, 219, 225; DOI: https://doi.org/10.1016/j.matlet.2018.02.052.

    Article  CAS  Google Scholar 

  85. A. R. Goldman, J. L. Fredricks, L. A. Estroff, J. Cryst. Growth, 2017, 468, 104; DOI: https://doi.org/10.1016/j.jcrysgro.2016.09.054.

    Article  CAS  Google Scholar 

  86. L. Hu, A. Percheron, D. Chaumont, C.-H. Brachais, J. Sol-Gel Sci. Technol., 2011, 60, 198; DOI: https://doi.org/10.1007/s10971-011-2579-4.

    Article  CAS  Google Scholar 

  87. T. González-Carreño, M. P. Morales, M. Gracia, C. J. Serna, Mater. Lett., 1993, 18, 151; DOI: https://doi.org/10.1016/0167-577X(93)90116-F.

    Article  Google Scholar 

  88. P. Tartaj, M. P. Morales, S. Veintemillas-Verdaguer, T. Gonzalez-Carre, C. J. Serna, J. Phys. D: Appl. Phys., 2003, 36, R182; DOI 10.1088/0022-3727/36/13/202.

    Article  CAS  Google Scholar 

  89. S. Veintemillas-Verdaguer, M. P. Morales, O. Bomati-Miguel, C. Bautista, X. Zhao, P. Bonville, R. P. Alejo, J. Ruiz-Cabello, M. Santos, F. J. Tendillo-Cortijo, J. Ferreirós, J. Phys. D: Appl. Phys., 2004, 37, 2054; DOI 10.1088/0022-3727/37/15/002.

    Article  CAS  Google Scholar 

  90. N. Florini, G. Barrera, P. Tiberto, P. Allia, F. Bondioli, J. Am. Ceram. Soc., 2013, 96, 3169; DOI: https://doi.org/10.1111/jace.12469.

    Article  CAS  Google Scholar 

  91. H. Kabir, S. H. Nandyala, M. M. Rahman, M. A. Kabir, Z. Pikramenou, M. Laver, A. Stamboulis, Ceram. Intern., 2019, 45, 424; DOI: https://doi.org/10.1016/j.ceramint.2018.09.183.

    Article  CAS  Google Scholar 

  92. M. Ismael, M. Wark, Catalysts, 2019, 9, 342; DOI: https://doi.org/10.3390/catal9040342.

    Article  Google Scholar 

  93. Y. Javed, K. Akhtar, H. Anwar, Y. Jamil, J. Nanoparticle Res., 2017, 19, 366; DOI: https://doi.org/10.1007/s11051-017-4045-x.

    Article  Google Scholar 

  94. M. Faraji, Y. Yamini, M. Rezaee, J. Iran. Chem. Soc., 2010, 7, 1; DOI: https://doi.org/10.1007/BF03245856.

    Article  CAS  Google Scholar 

  95. E. Hee Kim, H. Sook Lee, B. Kook Kwak, B.-K. Kim, J. Magnetism Magnetic Mater., 2005, 289, 328; DOI: https://doi.org/10.1016/j.jmmm.2004.11.093.

    Article  Google Scholar 

  96. N. Zhu, H. Ji, P. Yu, J. Niu, M. Farooq, M. Akram, I. Udego, H. Li, X. Niu, Nanomater., 2018, 8, 810; DOI: https://doi.org/10.3390/nano8100810.

    Article  Google Scholar 

  97. M. Abbas, B. Parvatheeswara Rao, M. Nazrul Islam, S. M. Naga, M. Takahashi, C. Kim, Ceram. Intern., 2014, 40, 1379; DOI: https://doi.org/10.1016/j.ceramint.2013.07.019.

    Article  CAS  Google Scholar 

  98. Y. S. Lim, C. W. Lai, S. B. Abd Hamid, RSC Adv., 2017, 7, 23030; DOI: https://doi.org/10.1039/C7RA00572E.

    Article  CAS  Google Scholar 

  99. J. Wang, H. Zhou, J. Zhuang, Q. Liu, Phys. Chem. Chem. Phys., 2015, 17, 3802; DOI: https://doi.org/10.1039/C4CP04228J.

    Article  CAS  PubMed  Google Scholar 

  100. C. He, S. Wu, N. Zhao, C. Shi, E. Liu, J. Li, ACS Nano, 2013, 7, 4459; DOI: https://doi.org/10.1021/nn401059h.

    Article  CAS  PubMed  Google Scholar 

  101. C. Xu, S. Sun, Adv. Drug Delivery Rev., 2013, 65, 732; DOI: https://doi.org/10.1016/j.addr.2012.10.008.

    Article  CAS  Google Scholar 

  102. H. Chen, F. Qi, H. Zhou, S. Jia, Y. Gao, K. Koh, Y. Yin, Sensors and Actuators B: Chem., 2015, 212, 505; DOI: https://doi.org/10.1016/j.snb.2015.02.062.

    Article  CAS  Google Scholar 

  103. C. Li, T. Chen, I. Ocsoy, G. Zhu, E. Yasun, M. You, C. Wu, J. Zheng, E. Song, C. Z. Huang, W. Tan, Adv. Funct. Mater., 2014, 24, 1772; DOI: https://doi.org/10.1002/adfm.201301659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. J. Du, C. Jing, J. Phys. Chem. C, 2011, 115, 17829; DOI: https://doi.org/10.1021/jp203181c.

    Article  CAS  Google Scholar 

  105. R. K. Satvekar, A. P. Tiwari, S. S. Rohiwal, B. M. Tiwale, S. H. Pawar, J. Mater. Eng. Performance, 2015, 24, 4691; DOI: https://doi.org/10.1007/s11665-015-1532-z.

    Article  CAS  Google Scholar 

  106. J. Chen, Y. Liu, G. Zhu, A. Yuan, Cryst. Res. Technol., 2014, 49, 309; DOI: https://doi.org/10.1002/crat.201300440.

    Article  CAS  Google Scholar 

  107. P. B. Shete, R. M. Patil, N. D. Thorat, A. Prasad, R. S. Ningthoujam, S. J. Ghosh, S. H. Pawar, Appl. Surf. Sci., 2014, 288, 149; DOI: https://doi.org/10.1016/j.apsusc.2013.09.169.

    Article  CAS  Google Scholar 

  108. A. Mohammadi, H. Daemi, M. Barikani, Int. J. Biol. Macromolec., 2014, 69, 447; DOI: https://doi.org/10.1016/j.ijbiomac.2014.05.042.

    Article  CAS  Google Scholar 

  109. M. Anbarasu, M. Anandan, E. Chinnasamy, V. Gopinath, K. Balamurugan, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 2015, 135, 536; DOI: https://doi.org/10.1016/j.saa.2014.07.059.

    Article  CAS  PubMed  Google Scholar 

  110. Y. Ma, X. Zhang, T. Zeng, D. Cao, Z. Zhou, W. Li, H. Niu, Y. Cai, ACS Appl. Mater. Interf., 2013, 5, 1024; DOI: https://doi.org/10.1021/am3027025.

    Article  CAS  Google Scholar 

  111. W. Wu, Z. Wu, T. Yu, C. Jiang, W.-S. Kim, Sci. Technol. Adv. Mater., 2015, 16, 023501; DOI: https://doi.org/10.1088/1468-6996/16/2/023501.

    Article  PubMed  PubMed Central  Google Scholar 

  112. G. Bisht, S. Rayamajhi, B. Kc, S. N. Paudel, D. Karna, B. G. Shrestha, Nanoscale Res. Lett., 2016, 11, 537; DOI: https://doi.org/10.1186/s11671-016-1734-9.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Q. Zeng, D. Jiang, S. Yang, RSC Adv., 2016, 6, 46143; DOI: https://doi.org/10.1039/C6RA02993K.

    Article  CAS  Google Scholar 

  114. F. Yi, Ceram. Intern., 2014, 40, 7837; DOI: https://doi.org/10.1016/j.ceramint.2013.12.128.

    Article  CAS  Google Scholar 

  115. H. J. Kitchen, S. R. Vallance, J. L. Kennedy, N. Tapia-Ruiz, L. Carassiti, A. Harrison, A. G. Whittaker, T. D. Drysdale, S. W. Kingman, D. H. Gregory, Chem. Rev., 2014, 114, 1170; DOI: https://doi.org/10.1021/cr4002353.

    Article  CAS  PubMed  Google Scholar 

  116. H. Katsuki, A. Shiraishi, S. Komarneni, W. J. Moon, S. Toh, K. Kaneko, J. Ceram. Soc Jpn, 2004, 112, 384; DOI: https://doi.org/10.2109/jcersj.112.384.

    Article  CAS  Google Scholar 

  117. H. Katsuki, E.-K. Choi, W.-J. Lee, K.-N. Hwang, W.-S. Cho, W. Huang, S. Komarneni, Mater. Chem. Phys., 2018, 205, 210; DOI: https://doi.org/10.1016/j.matchemphys.2017.10.078.

    Article  CAS  Google Scholar 

  118. N. Kijima, M. Yoshinaga, J. Awaka, J. Akimoto, Solid State Ionics, 2011, 192, 293; DOI: https://doi.org/10.1016/j.ssi.2010.07.012.

    Article  CAS  Google Scholar 

  119. H. Katsuki, S. Komarneni, J. Am. Ceram. Soc., 2004, 84, 2313; DOI: https://doi.org/10.1111/j.1151-2916.2001.tb01007.x.

    Article  Google Scholar 

  120. S. Bhattacharya, D. Mallik, S. Nayar, IEEE Trans. Magnet., 2011, 47, 1647; DOI: https://doi.org/10.1109/TMAG.2011.2104418.

    Article  CAS  Google Scholar 

  121. S. Riaz, R. Ashraf, A. Akbar, S Naseem, IEEE Trans. Magnet., 2014, 50, 1; DOI: https://doi.org/10.1109/TMAG.2014.2313117.

    Google Scholar 

  122. A. Abbasi, D. Ghanbari, M. Salavati-Niasari, M. Hamadanian, J. Mater. Sci.: Mater. Electronics, 2016, 27, 4800; DOI: https://doi.org/10.1007/s10854-016-4361-4.

    CAS  Google Scholar 

  123. R. Y. Hong, T. T. Pan, H. Z. Li, J. Magnetism Magnet. Mater., 2006, 303, 60; DOI: https://doi.org/10.1016/j.jmmm.2005.10.230.

    Article  CAS  Google Scholar 

  124. S. Dhage, Y. Khollam, H. Potdar, S. Deshpande, P. Bakare, S. Sainkar, S. Date, Mater. Lett., 2002, 57, 457; DOI: https://doi.org/10.1016/S0167-577X(02)00811-X.

    Article  CAS  Google Scholar 

  125. C. Li, Y. Wei, A. Liivat, Y. Zhu, J. Zhu, Mater. Lett., 2013, 107, 23; DOI: https://doi.org/10.1016/j.matlet.2013.05.117.

    Article  CAS  Google Scholar 

  126. Y. Khollam, S. Dhage, H. Potdar, S. Deshpande, P. Bakare, S. Kulkarni, S. Date, Mater. Lett., 2002, 56, 571; DOI: https://doi.org/10.1016/S0167-577X(02)00554-2.

    Article  CAS  Google Scholar 

  127. Y. Qian, Y. Xie, C. He, J. Li, Z. Chen, Mater. Res. Bull., 1994, 29, 953; DOI: https://doi.org/10.1016/0025-5408(94)90055-8.

    Article  Google Scholar 

  128. C. Sciancalepore, R. Rosa, G. Barrera, P. Tiberto, P. Allia, F. Bondioli, Mater. Chem. Phys., 2014, 148, 117; DOI: https://doi.org/10.1016/j.matchemphys.2014.07.020.

    Article  CAS  Google Scholar 

  129. C. Sciancalepore, F. Bondioli, T. Manfredini, A. Gualtieri, Mater. Charact., 2015, 100, 88; DOI: https://doi.org/10.1016/j.matchar.2014.12.013.

    Article  CAS  Google Scholar 

  130. H.-W. Wang, H.-C. Lin, Y.-C. Yeh, Int. J. Appl. Ceram. Technol., 2009, 7, E33; DOI: https://doi.org/10.1111/j.1744-7402.2009.02364.x.

    Article  Google Scholar 

  131. P. Tang, Y. Tong, H. Chen, F. Cao, G. Pan, Current Appl. Phys., 2013, 13, 340; DOI: https://doi.org/10.1016/j.cap.2012.08.006.

    Article  Google Scholar 

  132. M. Radpour, S. M. Masoudpanah, S. Alamolhoda, Ceram Intern., 2017, 43, 14756; DOI: https://doi.org/10.1016/J.CERAMINT.2017.07.216.

    Article  CAS  Google Scholar 

  133. A. Manikandan, J. J. Vijaya, L. J. Kennedy, J. Nanosci. Nanotechnol., 2013, 13, 2986; DOI: https://doi.org/10.1166/jnn.2013.7402.

    Article  CAS  PubMed  Google Scholar 

  134. S. Javadi, S. M. Masoudpanah, A. Zakeri, J. Sol-Gel Sci. Technol., 2016, 79, 176; DOI: https://doi.org/10.1007/s10971-016-4010-7.

    Article  CAS  Google Scholar 

  135. S. Farhadi, Z. Momeni, M. Taherimehr, J. Alloys Comp., 2009, 471, L5; DOI: https://doi.org/10.1016/j.jallcom.2008.03.113.

    Article  CAS  Google Scholar 

  136. Y. Sadaoka, H. Aono, E. Traversa, M. Sakamoto, J. Alloys Comp., 1998, 278, 135; DOI: https://doi.org/10.1557/JMR.1998.0189.

    Article  CAS  Google Scholar 

  137. O. V. Komov, V. I. Simagina, S. A. Mukha, O. V. Netskina, G. V. Odegova, O. A. Bulavchenko, A. V. Ishchenko, A. A. Pochtar’, Adv. Powder Technol., 2016, 27, 496; DOI: https://doi.org/10.1016/j.apt.2016.01.030.

    Article  Google Scholar 

  138. F. Majid, S. Riaz, S. Naseem, J. Sol-Gel Sci. Technol., 2015, 74, 310; DOI: https://doi.org/10.1007/s10971-014-3477-3.

    Article  CAS  Google Scholar 

  139. X. Qi, J. Zhou, Z. Yue, Z. Gui, L. Li, Ceram. Intern., 2003, 29, 347; DOI: https://doi.org/10.1016/S0272-8842(02)00119-0.

    Article  CAS  Google Scholar 

  140. Y. Wang, J. Zhu, L. Zhang, X. Yang, L. Lu, X. Wang, Mater. Lett., 2006, 60, 1767; DOI: https://doi.org/10.1016/j.matlet.2005.12.015.

    Article  CAS  Google Scholar 

  141. T. Striker, J. A. Ruud, J. Am. Ceram. Soc., 2010, 93, 2622; DOI: https://doi.org/10.1111/j.1551-2916.2010.03799.x.

    Article  CAS  Google Scholar 

  142. E. M. Kostyukhin, L. M. Kustov, Mendeleev Commun., 2018, 28, 559; DOI: https://doi.org/10.1016/j.mencom.2018.09.038.

    Article  CAS  Google Scholar 

  143. E. M. Kostyukhin, A. L. Kustov, L. M. Kustov, Ceram. International, 2019, 45, 14384; DOI: https://doi.org/10.3390/nano10081558.

    Article  CAS  Google Scholar 

  144. E. M. Kostyukhin, A. L. Kustov, N. D. Evdokimenko, A. I. Bazlov, L. M. Kustov, J. Am. Ceram. Soc., 2021, 104, 492; DOI: https://doi.org/10.1111/jace.17463.

    Article  CAS  Google Scholar 

  145. J. Prado-Gonjal, A. M. Arévalo-López, E. Morán, Mater. Res. Bull., 2011, 46, 222; DOI: https://doi.org/10.1016/j.materresbull.2010.11.010.

    Article  CAS  Google Scholar 

  146. A. Galal, N. F. Atta, S. M. Ali, Electrochim. Acta, 2011, 56, 5722; DOI: https://doi.org/10.1016/j.electacta.2011.04.045.

    Article  CAS  Google Scholar 

  147. V. V. Spiridonov, Yu. A. Antonova, V. S. Kusaya, M. I. Afanasov, S. S. Abramchuk, Russ. Chem. Bull., 2021, 70, 1675; DOI: https://doi.org/10.1007/s11172-021-3269-1.

    Article  CAS  Google Scholar 

  148. S. E. Lyubimov, A. Yu. Popov, P. V. Cherkasova, M. M. Il’in, A. A. Korlyukov, Russ. Chem. Bull., 2022, 71, 2098; DOI: https://doi.org/10.1007/s11172-022-3632-x.

    Article  Google Scholar 

  149. A. M. Demin, A. V. Vakhrushev, A. V. Mekhaev, M. A. Uimin, V. P. Krasnov, Russ. Chem. Bull., 2021, 70, 449; DOI: https://doi.org/10.1007/s11172-021-3107-5.

    Article  CAS  Google Scholar 

  150. A. M. Demin, A. V. Vakhrushev, M. S. Valova, A. S. Minin, D. K. Kuznetsov, M. A. Uimin, V. Ya. Shur, V. P. Krasnov, V. N. Charushin, Russ. Chem. Bull., 2021, 70, 987; DOI: https://doi.org/10.1007/s11172-021-3177-4.

    Article  CAS  Google Scholar 

  151. A. M. Demin, O. F. Kandarakov, A. S. Minin, D. K. Kuznetsov, M. A. Uimin, V. Ya. Shur, A. V. Belyavsky, V. P. Krasnov, Russ. Chem. Bull., 2021, 70, 1199; DOI: https://doi.org/10.1007/s11172-021-3205-4.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Kustov.

Additional information

Dedicated to Academician of the Russian Academy of Sciences I. P. Beletskaya on the occasion of her anniversary.

This work was financially supported by the Russian Science Foundation (Project No. 20-73-10106).

No human or animal subjects were used in this research.

The authors declare no competing interests.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 3, pp. 583–601, March, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kustov, L.M., Kostyukhin, E.M., Korneeva, E.Y. et al. Microwave synthesis of nanosized iron-containing oxide particles and their physicochemical properties. Russ Chem Bull 72, 583–601 (2023). https://doi.org/10.1007/s11172-023-3823-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-3823-5

Key words

Navigation