Skip to main content
Log in

Temperature-dependent luminescence of boron difluoride β-diketonates. Formation and dissociation of J-aggregates

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Temperature-dependent luminescence of polymer compositions doped with boron difluoride β-diketonates was revealed. At room temperature, the samples are characterized by yellow-green luminescence, which turns blue on heating. The mechanism of the temperature-dependent luminescence consists in the dissociation of J-aggregates of dyes on heating. The dissociation of J-aggregates is reversible. The luminescent polymer compositions studied are promising for the development of temperature sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Morita, S. Suzuki, K. Fukui, N. Shigeaki, K. Hiroshi, K. Hideo, O. Hiroshi, N. Akira, S. Akiko, O. Yuji, S. Motoo, S. Katsunari, S. Daisuke, S. Kazunobu, T. Takeji, N. Kazuhiro, Nat. Mater, 2008, 7, 48; DOI: https://doi.org/10.1038/nmat2067.

    Article  CAS  PubMed  Google Scholar 

  2. S. Jayanty, T. P. Radhakrishnan, Chem. Eur. J., 2004, 10, 791; DOI: https://doi.org/10.1002/chem.200305123.

    Article  CAS  PubMed  Google Scholar 

  3. X. Zhang, B. Li, Z.-H. Chen, Z.-N. Chen, J. Mater. Chem., 201, 22, 1048; DOI: https://doi.org/10.1039/C2JM30169E.

  4. M. A. Margulis Phys.-Usp. 2000, 43, 259; DOI: https://doi.org/10.3367/UFNr.0170.200003c.0263.

    Article  CAS  Google Scholar 

  5. O. S. Wenger, Chem. Rev., 2013, 113, 3686l; DOI: https://doi.org/10.1021/cr300396p.

    Article  Google Scholar 

  6. A. Pucci, G. Ruggeri, J. Mater. Chem., 2011, 21, 8282; DOI: https://doi.org/10.1039/C0JM03653F.

    Article  CAS  Google Scholar 

  7. S. Mehta, A. Kushwaha, R. R. Kisannagar, D. Gupta, RSC Adv., 2020, 10, 21270; DOI: https://doi.org/10.1039/D0RA03484C.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. S. Yamaguchi, I. Yoshikawa, T. Mutai, K. Araki, J. Mater. Chem., 2012, 22, 20065; DOI: https://doi.org/10.1039/D1TC06070H.

    Article  CAS  Google Scholar 

  9. K. Ariga, T. Mori, J. P. Hill, Adv. Mater., 2012, 24, 158; DOI: https://doi.org/10.1002/adma.201102617.

    Article  CAS  PubMed  Google Scholar 

  10. M. C. L. Yeung, K. M. C. Wong, Y. K. T. Tsang, V. W. W. Yam, Chem. Commun., 2010, 46, 7709; DOI: 1039/C0CC02631J.

    Article  CAS  Google Scholar 

  11. I. Roy, M. N. Gupta, Chem. Biol., 2003, 10, 1161; DOI: https://doi.org/10.1016/j.chembiol.2003.12.004.

    Article  CAS  PubMed  Google Scholar 

  12. J. Liu, Z. Yang, B. Ye, Z. Zhao, Y. Ruan, T. Guo, X. Yu, G. Chen, S. Xu, J. Mater. Chem. C, 2019, 7, 493; DOI: https://doi.org/10.1039/C8TC06292G.

    Google Scholar 

  13. G. M. Wang, G. X. Zhang, D. Q. Zhang, D. B. Zhu, B. Z. Tang, J. Mater. Chem., 2010, 20, 1858; DOI: https://doi.org/10.1039/B921610C.

    Article  CAS  Google Scholar 

  14. J. L. Y. Jiang, Y. L. Song, X. F. Guo, D. Q. Zhang, D. B. Zhu, Adv. Mater., 2008, 20, 2888; DOI: https://doi.org/10.1002/adma.200800666.

    Article  CAS  Google Scholar 

  15. S. A. Roberts, D. R. Bloomquist, R. D. Willet, H. W. Dodgen, J. Am. Chem. Soc., 1981, 103, 2603.

    Article  CAS  Google Scholar 

  16. L. D. Carlos, F. Palacio, Thermometry at the Nanoscale: Techniques and Selected Applications, Royal Society of Chemistry, Cambridge, 2016, 507 pp.

    Google Scholar 

  17. M. Dramicanin, Luminescence Thermometry: Methods, Materials, and Applications, Woodhead Publishing, Cambridge, 2018, 302 pp.

    Google Scholar 

  18. A. Ćirić, L. Marciniak, M. D. Dramicanin, J. Appl. Phys., 2022, 131, 14501; DOI: 10086807:10.1063/5.

    Article  Google Scholar 

  19. L. Marciniak, K. Kniec, K. Elzbieciak-Piecka, K. Trejgis, J. Stefanska, M. Dramicanin, Coord. Chem. Rev., 2022, 469, 14671; DOI: https://doi.org/10.1016/j.ccr.2022.214671.

    Article  Google Scholar 

  20. J. Talghader, M. L. Mah, E. G. Yukihara, A. C. Coleman, Microsyst. Nanoeng., 2016, 2, 16037; DOI: 1038/micronano.2016.37.

    Article  PubMed  PubMed Central  Google Scholar 

  21. J. F. Creemer, W. Van der Vlist, C. R. De Boer, D. Briand, N. F. de Rooij, IEEE Sensors, 2005, 30, 4; DOI: https://doi.org/10.1109/ICSENS.2005.1597703.

    Google Scholar 

  22. R. D. Willett, J. A. Haugen, J. Lebsack, J. Morrey, Inorg. Chem., 1974, 13, 2510.

    Article  CAS  Google Scholar 

  23. S. V. Eliseeva, J.-C. G. Bünzli, Chem. Soc. Rev., 2010, 39, 189; DOI: https://doi.org/10.1039/B905604C.

    Article  CAS  PubMed  Google Scholar 

  24. J. Harada, K. Ueki, M. Anada, Y. Kawazoe, K. Ogawa, Chem. Eur. J., 2011, 17, 14111; DOI: https://doi.org/10.1002/chem.201101717.

    Article  CAS  PubMed  Google Scholar 

  25. M. Miura, J. Harada, K. Ogawa, J. Phys. Chem. A, 2007, 111, 9854; DOI: https://doi.org/10.1021/jp073909d.

    Article  CAS  PubMed  Google Scholar 

  26. K. Corval, Y. Kuldova, Z. Eichen, J. M. Pikramenou, H. P. Lehn, J. Trommsdorff, J. Phys. Chem., 1996, 100, 19315; DOI: https://doi.org/10.1021/jp962433n.

    Article  CAS  Google Scholar 

  27. M. Inoue, K. Tsuchiya, T. Kitao, Angew. Chem., Int. Ed. Engl., 1992, 31, 20.

    Google Scholar 

  28. Y. Sheng, J. Leszczynski, A. A. Garcia, R. Rosario, D. Gust, J. Springer, J. Phys. Chem. B, 2004, 108, 16233; DOI: https://doi.org/10.1021/jp0488867/.

    Article  CAS  Google Scholar 

  29. S. Yitzchaik, G. Berkovic, V. Krongauz, Chem. Mater., 1990, 2, 162; DOI: https://doi.org/10.1021/cm00008a017.

    Article  CAS  Google Scholar 

  30. U. M. Dzhemilev, L. I. Khusainova, K. S. Ryazanov, L. O. Khafizova, Russ. Chem. Bull., 2021, 70, 1851; DOI: https://doi.org/10.1007/s11172-021-3292-2.

    Article  CAS  Google Scholar 

  31. D. S. Khachatryan, I. I. Boiko, A. V. Kolotaev, K. R. Matevosyan, Russ. Chem. Bull., 2020, 69, 325; DOI: https://doi.org/10.1007/s11172-020-2764-0.

    Article  CAS  Google Scholar 

  32. E. V. Fedorenko, G. O. Tretyakova, A. G. Mirochnik, A. Y. Beloliptsev, I. V. Svistunova, V. A. Sazhnikov, L. S. Atabekyan, J. Fluoresc., 2016, 26, 1839; DOI: https://doi.org/10.1007/s10895-016-1876-2.

    Article  CAS  PubMed  Google Scholar 

  33. E. V. Fedorenko, A. G. Mirochnik, A. Yu. Beloliptsev, J. Lumines., 2018, 196, 316; DOI: https://doi.org/10.1016/j.jlumin.2017.12.071.

    Article  CAS  Google Scholar 

  34. A. G. Mirochnik, E. V. Fedorenko, Optic. Spectrosc., 2017, 123, 365; DOI: https://doi.org/10.1134/S0030400X17090247.

    Article  CAS  Google Scholar 

  35. B. V. Bukvetskii, E. V. Fedorenko, A. G. Mirochnik, Russ. Chem. Bull., 2013, 62, 1991; DOI: https://doi.org/10.1007/s11172-013-0289-5.

    Article  CAS  Google Scholar 

  36. B. V. Bukvetskii, E. V. Fedorenko, A. G. Mirochnik, A. Yu. Beloliptsev, J. Struct. Chem., 2010, 51, 545; DOI: https://doi.org/10.1007/s10947-010-0079-y.

    Article  CAS  Google Scholar 

  37. A. G. Mirochnik, B. V. Bukvetskii, E. V. Fedorenko, V. E. Karasev, Russ. Chem. Bull., 2004, 53, 291; DOI: https://doi.org/10.1023/B:RUCB.0000030800.71663.7a.

    Article  CAS  Google Scholar 

  38. V. A. Reutov, E. V. Gukhman, Russ. J. Gen. Chem., 1999, 69, 1608.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Fedorenko.

Additional information

This work was financially supported by the Ministry of Science and Higher Education of the Russian Federation (No. FWFN (0205)-2022-0003).

No human or animal subjects were used in this research.

The authors declare no competing interests.

Anatoly Grigoryevich Mirochnik, born in 1953, Doctor of Science (Chem.), Head of Laboratory of the Federal State Budgetary Institution of Science the Institute of Chemistry of the Far-Eastern Branch of the Russian Academy of Sciences. He is a specialist in the field of physical chemistry of coordination compounds of lanthanoids and p-elements, their application in the design of new polyfunctional optical materials for agriculture, optoelectronics, and ecology. A. G. Mirochnik is the author of more than 200 articles in high-ranking Russian and international journals, one monograph, and 12 patents. The Hirsch index is 19 (Web of Science). Three Candidate of Science and two Doctor of Science theses were defended under the supervision of A. G. Mirochnik. He is a member of the board of the Mendeleev Russian Chemical Society, a member of the editorial board of the journal Vestnik of the FEB RAS, a member of the Organizing Committee of the International Conference on Spectroscopy of Coordination Compounds, an expert at the RAS and RFBR, and a member of dissertation councils at the Institute of Chemistry of the FEB RAS and FEFU.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 1, pp. 223–232, January, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirochnik, A.G., Fedorenko, E.V. Temperature-dependent luminescence of boron difluoride β-diketonates. Formation and dissociation of J-aggregates. Russ Chem Bull 72, 223–232 (2023). https://doi.org/10.1007/s11172-023-3727-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-3727-z

Key words

Navigation