Skip to main content
Log in

Hybrid macrocyclic polyoxoanions based on {Mo3S4}4+ and γ-[SiW10O36]8− as inorganic ligands

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The polyoxoanion [{Mo3S4(H2O)4(tu)}2{Mo3S4(H2O)3(tu)2}2(γ-SiW10O36)4]16− was obtained by the reaction of lacunary silicotungstate [γ-SiW10O36]8− with the trinuclear cluster cation Mo3S4(tu)8(H2O)]4+ (tu is thiourea, (NH2)2CS)). Its reaction with copper(I) iodide in the presence of chloride anions affords tetracubane polyoxometalate [{Mo3S4Cu(H2O)5}4Cl(γ-SiW10O36)4]13−, and the reaction with silver acetate gives the previously described [{Mo3S4(H2O)5}4(γ-SiW10O36)4]16−. The compounds were isolated as potassium sodium salts and structurally characterized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. L. Lon, E. Burkholder, L. Cronin, Chem. Soc. Rev., 2007, 36, 105; DOI: https://doi.org/10.1039/B502666K.

    Article  Google Scholar 

  2. M. T. Pope, Heteropoly and Isopoly Oxometalates, Springer-Verlag, Berlin, Germany, 1983, 180 pp.

    Book  Google Scholar 

  3. Polyoxometalates from Platonic Solids to Anti-Retroviral Activity, Eds M. T. Pope, A. Müller, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994, 419 pp.; DOI: https://doi.org/10.1007/978-94-011-0920-8.

    Google Scholar 

  4. Polyoxometalates Chemistry for Nano-composite Design, Eds T. Yamase, M. T. Pope, Kluwer Academic/Plenum Publishers, New York, USA, 2002, 235 pp.; DOI: https://doi.org/10.1007/b105365.

    Google Scholar 

  5. J. Lehmann, A. Gaita-Arino, E. Coronado, D. Loss, J. Mater. Chem., 2009, 19, 1672; DOI: https://doi.org/10.1039/B810634G.

    Article  CAS  Google Scholar 

  6. G. Charron, A. Giusti, S. Mazerat, P. Mialane, A. Gloter, F. Miserque, B. Keita, L. Nadjo, A. Filoramo, E. Rivière, W. Wernsdorfer, V. Huc, J.-P. Bourgoin, T. Mallah, Nanoscale, 2010, 2, 139; DOI: https://doi.org/10.1039/B9NR00190E.

    Article  CAS  PubMed  Google Scholar 

  7. G. N. Newton, S. Yamashita, K. Hasumi, J. Matsuno, N. Yoshida, M. Nihei, T. Shiga, M. Nakano, H. Nojiri, W. Wernsdorfer, H. Oshio, Angew. Chem., Int. Ed., 2011, 50, 5715; DOI: https://doi.org/10.1002/anie.201100515.

    Google Scholar 

  8. M. A. AlDamen, S. Cardona-Serra, J. Clemente-Juan, E. Coronado, A. Gaita-Arino, C. Marti-Gastaldo, F. Luis, O. Montero, Inorg. Chem., 2009, 48, 3467; DOI: https://doi.org/10.1021/ic801630z.

    Article  CAS  PubMed  Google Scholar 

  9. C. Ritchie, A. Ferguson, H. Nojiri, H. N. Miras, Y.-F. Song, D.-L. Long, E. Burkholder, M. Murrie, P. Kögerler, E. K. Brechin, L. Cronin, Angew. Chem., Int. Ed., 2008, 47, 5609; DOI: https://doi.org/10.1002/anie.200801281.

    Article  CAS  Google Scholar 

  10. M. A. AlDamen, J. M. Clemente-Juan, E. Coronado, C. Marti-Gastaldo, A. Gaita-Ariño, J. Am. Chem. Soc., 2008, 130, 8874; DOI: https://doi.org/10.1021/ja801659m.

    Article  CAS  PubMed  Google Scholar 

  11. J. D. Compain, P. Mialane, A. Dolbecq, I. M. Mbomekallé, J. Marrot, F. Sécheresse, E. Rivière, G. Rogez, W. Wernsdorfer, Angew. Chem., Int. Ed., 2009, 48, 3077; DOI: https://doi.org/10.1002/anie.200900117.

    Article  CAS  Google Scholar 

  12. H. Weiner, R. G. Finke, J. Am. Chem. Soc., 1999, 121, 9831; DOI: https://doi.org/10.1021/ja991503b.

    Article  CAS  Google Scholar 

  13. N. V. Maksimchuk, M. N. Timofeeva, M. S. Melgunov, A. N. Shmakov, Y. A. Chesalov, D. N. Dybtsev, V. P. Fedin, O. A. Kholdeeva, J. Catal., 2008, 257, 315; DOI: https://doi.org/10.1016/j.jcat.2008.05.014.

    Article  CAS  Google Scholar 

  14. Y. Kikukawa, K. Yamaguchi, N. Mizuno, Angew. Chem., Int. Ed., 2010, 49, 6096; DOI: https://doi.org/10.1002/anie.201001468.

    Article  CAS  Google Scholar 

  15. T. Okuhara, N. Mizuno, M. Misono, Appl. Catal., A, 2001, 222, 63; DOI: https://doi.org/10.1016/S0926-860X(01)00830-4.

    Article  CAS  Google Scholar 

  16. T. R. Zhang, S. Q. Liu, D. G. Kurth, C. F. J. Faul, Adv. Funct. Mater., 2009, 19, 642; DOI: https://doi.org/10.1002/adfm.200801409.

    Article  CAS  Google Scholar 

  17. G. J. T. Cooper, L. Cronin, J. Am. Chem. Soc., 2009, 131, 8368; DOI: https://doi.org/10.1021/ja902684b.

    Article  CAS  PubMed  Google Scholar 

  18. N. Kawasaki, H. Wang, R. Nakanishi, S. Hamanaka, R. Kitaura, H. Shinohara, T. Yokoyama, H. Yoshikawa, K. Awaga, Angew. Chem., Int. Ed., 2011, 50, 3471; DOI: https://doi.org/10.1002/anie.201007264.

    Article  CAS  Google Scholar 

  19. G. Geisberger, S. Paulus, M. Carraro, M. Bonchio, G. R. Patzke, Chem.-Eur. J., 2011, 17, 4619; DOI: https://doi.org/10.1002/chem.201002815.

    Article  CAS  PubMed  Google Scholar 

  20. M. J. Wall, G. Wigmore, J. Lopatar, B. G. Frenguelli, N. Dale, Neuropharmacology, 2008, 55, 1251; DOI: https://doi.org/10.1016/j.neuropharm.2008.08.005.

    Article  CAS  PubMed  Google Scholar 

  21. C. Musumeci, A. Luzio, C. P. Pradeep, H. N. Miras, M. H. Rosnes, Y. F. Song, D. L. Long, L. Cronin, B. Pignataro, J. Phys. Chem. C, 2011, 115, 4446; DOI: https://doi.org/10.1021/jp109916e.

    Article  CAS  Google Scholar 

  22. K. V. Grzhegorzhevskii, N. S. Shevtsev, A. R. Abushaeva, D. S. Chezganov, A. A. Ostroushko, Russ. Chem. Bull., 2020, 69, 804; DOI: https://doi.org/10.1007/s11172-020-2836-1.

    Article  CAS  Google Scholar 

  23. L. Chen, K. A. San, M. J. Turo, M. Gembicky, S. Fereidouni, M. Kalaj, A. M. Schimpf, J. Am. Chem. Soc., 2019, 141, 20261; DOI: https://doi.org/10.1021/jacs.9b10277.

    Article  CAS  PubMed  Google Scholar 

  24. P. Yang, W. Zhao, A. Shkurenko, Y. Belmabkhout, M. Eddaoudi, X. Dong, H. N. Alshareef, N. M. Khashab, J. Am. Chem. Soc., 2019, 141, 1847; DOI: https://doi.org/10.1021/jacs.8b11998.

    Article  CAS  PubMed  Google Scholar 

  25. P. Yang, B. Alshankiti, N. M. Khashab, CrystEngComm, 2020, 22, 2889; DOI: https://doi.org/10.1039/D0CE00397B.

    Article  CAS  Google Scholar 

  26. A. A. Ivanov, C. Falaise, A. A. Shmakova, N. Leclerc, S. Cordier, Y. Molard, Y. V. Mironov, M. A. Shestopalov, P. A. Abramov, M. N. Sokolov, M. Haouas, E. Cadot, Inorg. Chem., 2020, 59, 11396; DOI: https://doi.org/10.1021/acs.inorgchem.0c01160.

    Article  CAS  PubMed  Google Scholar 

  27. J. Shi, H. Zhang, P. Wang, P. Wang, J. Zha, Y. Liu, J. Gautam, L.-N. Zhang, Y. Wang, J. Xie, L. Ni, G. Diao, Y. Wei, CrystEngComm, 2021, 23, 8482; DOI: https://doi.org/10.1039/D1CE01203G.

    Article  CAS  Google Scholar 

  28. J. Yu, L. Zheng, L. Zhang, Q. Mao, W. Jia, Z. Liang, J. Coord. Chem., 2021, 74, 919; DOI: https://doi.org/10.1080/00958972.2021.1882675.

    Article  CAS  Google Scholar 

  29. S. U. Khan, B.-L. Liu, M. Akhtar, J. Du, J. Peng, X. Zhao, W. G. Xi, H.-Y. Zang, Y.-G. Li, Inorg. Chem. Commun., 2018, 97, 187; DOI: https://doi.org/10.1016/j.inoche.2018.09.036.

    Article  CAS  Google Scholar 

  30. H. Wang, J. Sun, Y. Ma, C. Li, L. Nan, P. Ma, D. Zhang, G. Wang, J. Wang, J. Niu, Dalton Trans., 2020, 49, 4078; DOI: https://doi.org/10.1039/C9DT04828F.

    Article  CAS  PubMed  Google Scholar 

  31. E. Cadot, V. Béreau, B. Marg, S. Halut, F. Sécheresse, Inorg. Chem., 1996, 35, 3099; DOI: https://doi.org/10.1021/ic951054q.

    Article  CAS  PubMed  Google Scholar 

  32. A. Müller, V. P. Fedin, C. Kuhlmann, H. D. Fenske, G. Baum, H. Bögge, B. Hauptfleish, Chem. Commun., 1999, 1189; DOI: https://doi.org/10.1039/A903170G.

  33. E. Cadot, M. N. Sokolov, V. P. Fedin, C. Simonnet-Jégat, S. Floquet, F. Sécheresse, Chem. Soc. Rev., 2012, 41, 7335; DOI: https://doi.org/10.1039/C2CS35145E.

    Article  CAS  PubMed  Google Scholar 

  34. V. S. Korenev, P. A. Abramov, C. Vicent, D. A. Mainichev, S. Floquet, E. Cadot, M. N. Sokolov, V. P. Fedin, Dalton Trans., 2012, 41, 14484; DOI: https://doi.org/10.1039/C2DT31512B.

    Article  CAS  PubMed  Google Scholar 

  35. N. Watfa, S. Floquet, E. Terazzi, M. Haouas, W. Salomon, V. S. Korenev, F. Taulelle, L. Guenee, A. Hijazi, D. Naoufal, C. Piguet, E. Cadot, Soft Matter, 2015, 11, 1087; DOI: https://doi.org/10.1039/C4SM02551B.

    Article  CAS  PubMed  Google Scholar 

  36. D. Fu, B. Fabre, G. Loget, C. Meriadec, S. Ababou-Girard, E. Cadot, N. Leclerc-Laronze, J. Marrot, Q. de Ponfilly, ACS Omega, 2018, 3, 13837; DOI: https://doi.org/10.1021/acsomega.8b01734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. J. Tourneur, B. Fabre, G. Loget, A. Vacher, C. Meriadec, S. Ababou-Girard, F. Gouttefangeas, L. Joanny, E. Cadot, M. Haouas, N. Leclerc-Laronze, C. Falaise, E. Guillon, J. Am. Chem. Soc., 2019, 141, 11954; DOI: https://doi.org/10.1021/jacs.9b03950.

    Article  CAS  PubMed  Google Scholar 

  38. Y. Smortsova, C. Falaise, A. Fatima, M.-H. Ha-Thi, R. Méallet-Renault, K. Steenkeste, S. Al-Bacha, T. Chaib, L. Assaud, M. Lepeltier, M. Haouas, N. Leclerc, T. Pino, E. Cadot, Chem. Eur. J., 2021, 27, 17094; DOI: https://doi.org/10.1002/chem.202102693.

    Article  CAS  PubMed  Google Scholar 

  39. A. L. Gushchin, Y. A. Laricheva, P. A. Abramov, A. V. Virovets, C. Vicent, M. N. Sokolov, R. Llusar, Eur. J. Inorg. Chem., 2014, 2014, 4093; DOI: https://doi.org/10.1002/ejic.201402343.

    Article  CAS  Google Scholar 

  40. N. V. Izarova, M. N. Sokolov, E. Cadot, J. Marrot, F. Secheresse, V. P. Fedin, Russ. Chem. Bull., 2004, 53, 1503; DOI: https://doi.org/10.1023/B:RUCB.0000046247.71075.83.

    Article  CAS  Google Scholar 

  41. A. Gushchin, R. Llusar, D. Recatala, P. Abramov, Russ. J. Coord. Chem., 2012, 38, 173; DOI: https://doi.org/10.1134/S1070328412030050.

    Article  CAS  Google Scholar 

  42. R. Llusar, S. Uriel, Eur. J. Inorg. Chem., 2003, 2003, 1271; DOI: https://doi.org/10.1002/ejic.200390164.

    Article  Google Scholar 

  43. J. Andrés, M. Feliz, J. Fraxedas, V. Hernández, J. T. López-Navarrete, R. Llusar, G. Sauthier, F. R. Sensato, B. Silvi, C. Bo, J. M. Campanera, Inorg. Chem., 2007, 46, 2159; DOI: https://doi.org/10.1021/ic061853g.

    Article  PubMed  Google Scholar 

  44. M. Feliz, E. Guillamon, R. Llusar, C. Vicent, S. Stiriba, J. Perez-Prieto, M. Barberis, Chem. Eur. J., 2006, 12, 1486; DOI: https://doi.org/10.1002/chem.200500907.

    Article  CAS  PubMed  Google Scholar 

  45. E. Guillamón, R. Llusar, J. Pérez-Prieto, S.-E. Stiriba, J. Organomet. Chem., 2008, 693, 1723; DOI: https://doi.org/10.1016/j.jorganchem.2007.12.029.

    Article  Google Scholar 

  46. A. L. Gushchin, K. A. Kovalenko, M. N. Sokolov, D. Yu. Naumov, N. F. Zakharchuk, C. Vicent, V. P. Fedin, Russ. Chem. Bull., 2007, 56, 1701; DOI: https://doi.org/10.1007/s11172-007-0264-0.

    Article  CAS  Google Scholar 

  47. J. Á. Pino-Chamorro, Y. A. Laricheva, E. Guillamón, M. J. Fernández-Trujillo, A. G. Algarra, A. L. Gushchin, P. A. Abramov, E. Bustelo, R. Llusar, M. N. Sokolov, M. G. Basallote, Inorg. Chem., 2016, 55, 9912; DOI: https://doi.org/10.1021/acs.inorgchem.6b01878.

    Article  CAS  PubMed  Google Scholar 

  48. M. N. Sokolov, E. V. Peresypkina, I. V. Kalinina, A. V. Virovets, V. S. Korenev, V. P. Fedin, Eur. J. Inorg. Chem., 2010, 2010, 5446; DOI: https://doi.org/10.1002/ejic.201000693.

    Article  Google Scholar 

  49. S. Duval, M. A. Pilette, J. Marrot, C. Simonnet-Jegat, M. N. Sokolov, E. Cadot, Chem.-Eur. J., 2008, 14, 3457; DOI: https://doi.org/10.1002/chem.200701152.

    Article  CAS  PubMed  Google Scholar 

  50. H. Dobbek, L. Gremer, R. Kiefersauer, R. Huber, O. Meyer, Proc. Natl. Acad. Sci., 2002, 99, 15971; DOI: https://doi.org/10.1073/pnas.212640899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. X. Wu, S. Lu, L. Zu, Q.-J. Wu, J. Lu, Inorg. Chim. Acta, 1987, 133, 39; DOI: https://doi.org/10.1016/S0020-1693(00)84368-6.

    Article  CAS  Google Scholar 

  52. S.-F. Lu, N. Zhu, X. Wu, Q.-J. Wu, J. Lu, J. Mol. Struct., 1989, 197, 15; DOI: https://doi.org/10.1016/0022-2860(89)85145-2.

    Article  CAS  Google Scholar 

  53. S.-F. Lu, J.-Q. Huang, Z.-D. Chen, Q.-J. Wu, W.-Z. Chen, X.-Y. Huang, Z.-X. Huang, J.-L. Huang, J.-X. Lu, J. Clust. Sci., 1992, 3, 179; DOI: https://doi.org/10.1007/BF00702882.

    Article  CAS  Google Scholar 

  54. S.-F. Lu, Y. Peng, H.-J. Fan, Q.-J. Wu, Z.-X. Huang, J.-Q. Huang, J. Clust. Sci., 2002, 13, 15; DOI: https://doi.org/10.1023/A:1015130811121.

    Article  CAS  Google Scholar 

  55. M. Feliz, J. M. Garriga, R. Llusar, S. Uriel, M. G. Humphrey, N. T. Lucas, M. Samoc, B. Luther-Davies, Inorg. Chem., 2001, 40, 6132; DOI: https://doi.org/10.1021/ic010098y.

    Article  CAS  PubMed  Google Scholar 

  56. A. L. Gushchin, M. N. Sokolov, K. A. Kovalenko, E. V. Peresypkina, A. V. Virovets, N. I. Alferova, V. P. Fedin, Russ. J. Coord. Chem., 2009, 35, 395; DOI: https://doi.org/10.1134/S1070328409060013.

    Article  CAS  Google Scholar 

  57. A. Tézé, G. Hervé, R. G. Finke, D. K. Lyon, Inorg. Synth., 1990, 27, 85; DOI: https://doi.org/10.1002/9780470132586.ch16.

    Google Scholar 

  58. G. M. Sheldrick, Acta Cryst., 2015, A71, 3; DOI: https://doi.org/10.1107/S2053273314026370.

    Google Scholar 

  59. G. M. Sheldrick, Acta Cryst., 2015, C71, 3; DOI: https://doi.org/10.1107/S2053229614024218.

    Google Scholar 

  60. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339; DOI: https://doi.org/10.1107/S0021889808042726.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Korenev.

Additional information

The work was financially supported by the Ministry of Science and Higher Education of the Russian Federation (Project No. 121031700313-8).

No human or animal subjects were used in this research.

The authors declare no competing interests.

Maksim Nailevich Sokolov, born in 1967, Chief Researcher at the A. V. Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences, Professor, Professor of the Russian Academy of Sciences, candidate for Corresponding Member of the Russian Academy of Sciences in the elections in 2022, expert in the field of inorganic chemistry. He is an author and co-author of 510 scientific articles. He developed the chemistry of polynuclear and cluster compounds of transition and post-transition metals and studied in details polyoxometalates, halides, and chalcogenides, complexes of heavy transition metals, including noble metals, polyhalide complexes. He discovered a new class of luminescent materials with high quantum yields and proposed new MRT and X-ray contrast agents and materials for photovoltaic cells. He is a member of the editorial board of the “Journal of Structural Chemistry”, a member of the Scientific Council of the A. V. Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences and the Dissertation Council for defending PhD and Dr Sci at the same Institute.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 1, pp. 158–166, January, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korenev, V.S., Sukhikh, T.S. & Sokolov, M.N. Hybrid macrocyclic polyoxoanions based on {Mo3S4}4+ and γ-[SiW10O36]8− as inorganic ligands. Russ Chem Bull 72, 158–166 (2023). https://doi.org/10.1007/s11172-023-3720-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-3720-6

Key words

Navigation