Skip to main content
Log in

Metal-polymer nanocomposites based on metal-containing monomers

  • Reviews
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

A detailed analysis of the latest achievements in the field of preparing promising metal-polymer nanocomposites by the conjugated thermolysis of metal-containing monomers as precursors was carried out. The general scheme of conjugated thermolysis includes three successive stages: dehydration (desolvation), polymerization, and thermolysis of the formed metal polymers. The kinetic schemes and reactions of thermal transformation of metal-containing monomers are analyzed. Particular attention is paid to the compositions and structures of the resulting metal-polymer nanocomposites. The use of the prepared nanocomposites as tribological and magnetic materials, sensors, and catalysts is generalized. The problems and prospects for the preparation of new nanomaterials using conjugated thermolysis of metal-containing monomers are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. I. Vernaya, V. V. Epishev, M. A. Markov, A. V. Nuzhdina, V. V. Fedorov, V. P. Shabatin, T. I. Shabatina, Moscow Univ. Chem. Bull., 2017, 72, 267–268; DOI: https://doi.org/10.3103/S0027131417060074.

    Article  Google Scholar 

  2. Huba Z. J., Carpenter E. E., Dalton Trans., 2014, 43, 12236–12242; DOI: https://doi.org/10.1039/c4dt01207k.

    Article  CAS  PubMed  Google Scholar 

  3. A. D. Pomogailo, G. I. Dzhardimalieva, Nanostructured Materials Preparation Via Condensation Ways, Springer, New York, 2014; DOI: https://doi.org/10.1007/978-90-481-2567-8.

    Book  Google Scholar 

  4. A. D. Pomogailo, G. I. Dzhardimalieva, Metallopolimernye gibridnye nanokompozity [Metal-Polymer Hybrid Nanocomposites], Nauka, Moscow, 2015 (in Russian).

    Google Scholar 

  5. D. Sundaram, V. Yang, R. A. Yetter, Progr. Energy Combust. Sci., 2017, 61, 293; DOI: https://doi.org/10.1016/j.pecs.2017.02.002.

    Article  Google Scholar 

  6. B. Tylkowski, B. Tylkowski, A. Trojanowska, M. Nowak, L. Marciniak, R. Jastrzab, Phys. Sci. Rev., 2017, 2, 20170024; DOI: https://doi.org/10.1515/psr-2017-0024.

    Google Scholar 

  7. S. Mu, J. Nan, C. Shi, X. Tang, S. Liu, H. Chen, J. Zhang, B. Yang, Macromol. Rapid Commun., 2020, 41, 2000390; DOI: https://doi.org/10.1002/marc.202000390.

    Article  CAS  Google Scholar 

  8. O. V. Arzhakova, S. M. Kovalenko, A. Yu. Kopnov, A. I. Nazarov, T. Yu. Kopnova, N. A. Shpolvind, P. M. Tyubaeva, T. A. Cherdyntseva, A. Yu. Yarysheva, A. A. Dolgova, A. L. Volynskii, Russ. J. Gen. Chem., 2021, 91, 2249; DOI: https://doi.org/10.1134/S1070363221110104.

    Article  CAS  Google Scholar 

  9. D. S. Reig, P. Hummel, Z. Wang, S. Rosenfeldt, B. Graczykowski, M. Retsch, G. Fytas, Phys. Rev. Mater., 2018, 2, 123605; DOI: https://doi.org/10.1103/PhysRevMaterials.2.123605.

    Article  CAS  Google Scholar 

  10. R. Wahab, F. Khan, J. Ahmad, A. A. Al-Khedhairy, J. King Saud Univ.Sci., 2022, 34, 101908; DOI: https://doi.org/10.1016/j.jksus.2022.101908.

    Article  Google Scholar 

  11. J. Wang, W. Wang, Y. Chen, L. Song, W. Huang, Small Methods, 2021, 12, e2100829; DOI: https://doi.org/10.1002/smtd.202100829.

    Article  Google Scholar 

  12. V. Zadorozhnyy, M. Churyukanova, A. Stepashkin, M. Zadorozhnyy, A. Sharma, D. Moskovskikh, J. Wang, E. Shabanova, S. Ketov, D. Louzguine-Luzgin, S. Kaloshkin, Metals, 2018, 8, 1037; DOI: https://doi.org/10.3390/met8121037.

    Article  CAS  Google Scholar 

  13. N. N. Volkova, L. M. Bogdanova, V. T. Volkov, A. V. Karabulin, V. I. Matyushenko, M. G. Spirin, Russ. Chem. Bull., 2021, 70, 1690; DOI: https://doi.org/10.1007/s11172-021-3271-7.

    Article  CAS  Google Scholar 

  14. N. Pinto, S. Javad Rezvani, A. Perali, L. Flammia, M. V. Milošević, M. Fretto, C. Cassiago, N. De Leo, Sci. Rep., 2018, 8, 4710; DOI: https://doi.org/10.1038/s41598-018-22983-6.

    Article  PubMed  PubMed Central  Google Scholar 

  15. A. D’Elia, S. J. Rezvani, N. Zema, F. Zuccaro, M. Fanetti, B. Belec, B. W. Li, C. W. Zou, C. Spezzani, M. Sacchi, A. Marcelli, M. Coreno, J. Nanopart. Res., 2021, 23, 33; DOI: https://doi.org/10.1007/s11051-020-05130-z.

    Article  Google Scholar 

  16. G. N. Blackman III, D. A. Genov, Phys. Rev. B, 2018, 97, 115440; DOI: https://doi.org/10.48550/arXiv.1706.06747.

    Article  CAS  Google Scholar 

  17. P. Srinoi, Y.-T. Chen, V. Vittur, M. D. Marquez, T. R. Lee, Appl. Sci., 2018, 8, 1106; DOI: https://doi.org/10.3390/app8071106.

    Article  Google Scholar 

  18. R. Ahmad, N. Griffete, A. Lamouri, N. Felidj, M. M. Chehimi, C. Mangeney, Chem. Mater., 2015, 27, 5464; DOI: https://doi.org/10.1021/acs.chemmater.5b00138.

    Article  CAS  Google Scholar 

  19. A. Sanati, R. S. Moakhar, I. I. Hosseini, K. Raeissi, F. Karimzadeh, M. Jalali, M. Kharaziha, S. Sheibani, L. Shariati, J. F. Presley, H. Vali, S. Mahshid, ACS Sensors, 2021, 6, 797; DOI: https://doi.org/10.1021/acssensors.0c01701.

    Article  CAS  PubMed  Google Scholar 

  20. A. Gentile, F. Ruffino, M. G. Grimaldi, Nanomaterials, 2016, 6, 110; DOI: https://doi.org/10.3390/nano6060110.

    Article  PubMed Central  Google Scholar 

  21. A. H. Mohamad, O. Gh. Abdullah, S. R. Saeed, Results Phys., 2020, 16, 102898; DOI: https://doi.org/10.1016/j.rinp.2019.102898.

    Article  Google Scholar 

  22. A. S. Pozdnyakov, A. A. Ivanova, A. I. Emel’yanov, G. F. Prozorova, Russ. Chem. Bull., 2020, 69, 715; DOI: https://doi.org/10.1007/s11172-020-2823-6.

    Article  CAS  Google Scholar 

  23. M. N. Gorbunova, T. D. Batueva, D. M. Kiselkov, V. N. Strelnikov, Russ. Chem. Bull., 2021, 70, 1706; DOI: https://doi.org/10.1007/s11172-021-3273-5.

    Article  CAS  Google Scholar 

  24. N. Fernandes, H. Koerner, E. Giannelis, R. Vaia, MRS Commun., 2013, 3, 13; DOI 557/mrc.2013.9.

    Article  CAS  Google Scholar 

  25. G. Heness, in Advances in Polymer Nanocomposites, Ed. F. Gao, Woodhead Publishing, Oxford, 2012, p. 164; DOI: https://doi.org/10.1533/9780857096241.1.164.

  26. A. Pardo, M. Gómez-Florit, S. Barbosa, P. Taboada, R. M. A. Domingues, M. E. Gomes, ACS Nano, 2021, 15, 175; DOI: https://doi.org/10.1021/acsnano.0c08253.

    Article  CAS  PubMed  Google Scholar 

  27. W. Cao, S. Xia, X. Jiang, M. Appold, M. Opel, M. Plank, R. Schaffrinna, L. P. Kreuzer, S. Yin, M. Gallei, M. Schwartzkopf, S. V. Roth, P. Müller-Buschbaum, ACS Appl. Mater. Interfaces, 2020, 12, 7557; DOI: https://doi.org/10.1021/acsami.9b20905.

    Article  CAS  PubMed  Google Scholar 

  28. M. A. Rahman, B. Ochiai, RSC Adv., 2022, 12, 8043; DOI: https://doi.org/10.1039/d1ra09445a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. S. G. Stanciu, D. E. Tranca, G. Zampini, R. Hristu, G. A. Stanciu, X. Chen, M. Liu, H. A. Stenmark, L. Latterini, ACS Omega, 2022, 7, 11353; DOI: https://doi.org/10.1021/acsomega.2c00410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. P. P. P. Kumar, D. K. Lim, Pharmaceutics, 2021, 14, 70; DOI: https://doi.org/10.3390/pharmaceutics14010070.

    Article  PubMed  PubMed Central  Google Scholar 

  31. T. Fernandes, A. L. Daniel-da-Silva, T. Trindade, Coord. Chem. Rev., 2022, 460, 214483; DOI: https://doi.org/10.1016/j.ccr.2022.214483.

    Article  CAS  Google Scholar 

  32. M. Salehipour, S. Rezaei, J. Mosafer, Z. Pakdin-Parizi, A. Motaharian, M. Mogharabi-Manzari, J. Nanopart. Res., 2021, 23, 48; DOI: https://doi.org/10.1007/s11051-021-05156-x.

    Article  CAS  Google Scholar 

  33. Y. Zare, I. Shabani, Mater. Sci. Eng.: C, 2016, 60, 195; DOI: https://doi.org/10.1016/j.msec.2015.11.023.

    Article  CAS  Google Scholar 

  34. S. Chauhan, N. Al-Dayan, R. Kumar, S. C. Chabattula, M. Sahni, R. Ranjithkumar, P. Kumar Gupta, Mater. Lett., 2022, 306, 130943; DOI: https://doi.org/10.1016/j.matlet.2021.130943.

    Article  CAS  Google Scholar 

  35. M. N. Gorbunova, A. O. Voronina, V. N. Strelnikov, Russ. Chem. Bull., 2021, 70, 469; DOI: https://doi.org/10.1007/s11172-021-3110-x.

    Article  CAS  Google Scholar 

  36. E. S. Madivoli, P. G. Kareru, A. N. Gachanja, D. S. Makhanu, S. M. Mugo, J. Inorg. Organomet. Polym., 2022, 32, 854; DOI: https://doi.org/10.1007/s10904-021-02212-w.

    Article  CAS  Google Scholar 

  37. K. Zheng, M. Inggrid, S. David, T. Leong, J. Xie, Coord. Chem. Rev., 2018, 357, 1; DOI: https://doi.org/10.1016/j.ccr.2017.11.019.

    Article  CAS  Google Scholar 

  38. C. Altinkok, G. Acik, O. Daglar, H. Durmaz, I. Tunc, E. Agel, Eur. Polym. J., 2022, 169, 111130; DOI: https://doi.org/10.1016/j.eurpolymj.2022.111130.

    Article  CAS  Google Scholar 

  39. R. Kumar, P. K. Gupta, S. Pandit, N. K. Jha, J. Ruokolainen, K. K. Kesari, P. P. Patil, S. S. Narayanan, Colloids Surf. A: Physicochem. Eng. Asp., 2022, 633, 127845; DOI: https://doi.org/10.1016/j.colsurfa.2021.127845.

    Article  CAS  Google Scholar 

  40. A. M. Alkilany, O. Rachid, M. Y. Alkawareek, N. Billa, A. Daou, C. J. Murphy, Pharmaceutics, 2022, 14, 660; DOI: https://doi.org/10.3390/pharmaceutics14030660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. H. Shamsijazeyi, C. A. Miller, M. S. Wong, J. M. Tour, R. Verduzco, J. Appl. Polym. Sci., 2014, 131, 40576; DOI: https://doi.org/10.1002/app.40576.

    Article  Google Scholar 

  42. Y. Liu, T. Liu, X. Liu, B. Liu, M. Y. Zhang, Polym. Eng. Sci., 2022, 62, 576; DOI: https://doi.org/10.1002/pen.25869.

    Article  CAS  Google Scholar 

  43. K. Kashihara, Y. Uto, T. Nakajima, Polym. Bull., 2020, 78, 6969; DOI: https://doi.org/10.1007/s00289-020-03481-0.

    Article  Google Scholar 

  44. S. G. Nedilko, Acta Phys. Polonica A, 2018, 133, 829; DOI: https://doi.org/10.12693/APhysPolA.133.829.

    Article  CAS  Google Scholar 

  45. L. Walekar, T. Dutta, P. Kumar, Y. S. Ok, S. Pawar, A. Deep, K.-H. Kim, TrAC Trends Anal. Chem., 2017, 97, 458; DOI: https://doi.org/10.1016/j.trac.2017.10.012.

    Article  CAS  Google Scholar 

  46. M. Sultan, E. S. Mansor, Z. A. Nagieb, H. Elsayed, J. Water Process Eng., 2021, 42, 102184; DOI: https://doi.org/10.1016/j.jwpe.2021.102184.

    Article  Google Scholar 

  47. S. Mu, J. Nan, C. Shi, X. Tang, S. Liu, H. Chen, J. Zhang, B. Yang, Macromol. Rapid Commun., 2020, 41, 2000390; DOI: https://doi.org/10.1002/marc.202000390.

    Article  CAS  Google Scholar 

  48. A. Gerasin, E. M. Antipov, V. V. Karbushev, V. G. Kulichikhin, G. P. Karpacheva, R. V. Talroze, Y. V. Kudryavtsev, Russ. Chem. Rev., 2013, 82, 303; DOI: https://doi.org/10.1070/RC2013v082n04ABEH004322.

    Article  Google Scholar 

  49. K. Manojkumar, A. Sivaramakrishna, K. Vijayakrishna, J. Nanopart. Res., 2016, 18, 103; DOI: https://doi.org/10.1007/s11051-016-3409-y.

    Article  Google Scholar 

  50. V. Divya, M. V. Sangaranarayanan, J. Polym. Res., 2016, 23, 149; DOI: https://doi.org/10.1007/s10965-016-1050-1.

    Article  Google Scholar 

  51. G. F. Novikov, E. V. Rabenok, K. A. Kydralieva, G. I. Dzhardimalieva, Russ. J. Phys. Chem., 2019, 93, 2424; DOI: https://doi.org/10.1134/S0036024419120227.

    Article  CAS  Google Scholar 

  52. K. Ponprapakaran, R. Harihara Subramani, R. Baskaran, K.-L. Tung, R. Anbarasan, J. Appl. Polym. Sci., 2018, 135, 46469; DOI: https://doi.org/10.1002/app.46469.

    Article  Google Scholar 

  53. G. I. Dzhardimalieva, I. E. Uflyand, J. Polym. Res., 2018, 25, 255; DOI: https://doi.org/10.1007/s10965-018-1646-8.

    Article  Google Scholar 

  54. L. Bondarenko, E. Illés, E. Tombácz, G. Dzhardimalieva, N. Golubeva, O. Tushavina, Y. Adachi, K. Kydralieva, Nanomaterials, 2021, 11, 1418; DOI: https://doi.org/10.3390/nano11061418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. M. M. Adnan, A. R. M. Dalod, M. H. Balci, J. Glaum, M.-A. Einarsrud, Polymers, 2018, 10, 1129; DOI: https://doi.org/10.3390/polym10101129.

    Article  PubMed Central  Google Scholar 

  56. C. A. Charitidis, P. Georgiou, M. A. Koklioti, A.-F. Trompeta, V. Markakis, Manufacturing Rev., 2014, 1, 11; DOI: https://doi.org/10.1051/mfreview/2014009.

    Article  Google Scholar 

  57. S. H. Mir, L. A. Nagahara, T. Thundat, P. Mokarian-Tabari, H. Furukawa, A. Khosla, J. Electrochem. Soc., 2018, 165, B3137; DOI: https://doi.org/10.1149/2.0191808jes.

    Article  CAS  Google Scholar 

  58. J. Fawaz, V. Mittal, in Synthesis Techniques for Polymer Nanocomposites, Ed. V. Mittal, Wiley, Hoboken, 2015, p. 1; DOI: https://doi.org/10.1002/9783527670307.ch1.

  59. I. E. Uflyand, G. I. Dzhardimalieva, Nanomaterials Preparation by Thermolysis of Metal Chelates, Springer, Cham, 2018; DOI: https://doi.org/10.1007/978-3-319-93405-1.

    Book  Google Scholar 

  60. J. N. Hahladakis, C. A. Velis, R. Weber, E. Iacovidou, P. Purnell, J. Hazard. Mater., 2018, 344, 179; DOI: https://doi.org/10.1016/j.jhazmat.2017.10.014.

    Article  CAS  PubMed  Google Scholar 

  61. X. Liu, C. Gao, P. Sangwan, L. Yu, Z. Tong, J. Appl. Polym. Sci., 2014, 131, 40750; DOI: https://doi.org/10.1002/app.40750.

    Google Scholar 

  62. V. M. Aristov, E. P. Aristova, Plasticheskie Massy [Plastics], 2020, 5–6, 23 (in Russian); DOI: https://doi.org/10.35164/0554-29012020-5-6-23-24.

    Article  Google Scholar 

  63. G. I. Dzhardimalieva, I. E. Uflyand, J. Inorg. Organomet. Polym. Mater., 2020, 30, 88; DOI: https://doi.org/10.1007/s10904-019-01275-0.

    Article  CAS  Google Scholar 

  64. G. I. Dzhardimalieva, I. E. Uflyand, J. Inorg. Organomet. Polym. Mater., 2016, 26, 1112; DOI: https://doi.org/10.1007/s10904-016-0418-3.

    Article  CAS  Google Scholar 

  65. G. I. Dzhardimalieva, I. E. Uflyand, J. Coord. Chem., 2017, 70, 1468; DOI: https://doi.org/10.1080/00958972.2017.1317347.

    Article  CAS  Google Scholar 

  66. R. Qu, H. Suo, Y. Gu, Y. Weng, Y. Qin, Polymers, 2022, 14, 1128; DOI: https://doi.org/10.3390/polym14061128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. S. Osawa, S. Kurokawa, H. Otsuka, Chem. Commun., 2022, 58, 5273; DOI: https://doi.org/10.1039/D1CC07265J.

    Article  CAS  Google Scholar 

  68. G. I. Dzhardimalieva, J. Inorg. Organomet. Polym. Mater., 2016, 26, 1107; DOI: https://doi.org/10.1007/s10904-016-0419-2.

    Article  CAS  Google Scholar 

  69. S. A. Semenov, V. Y. Musatova, D. V. Drobot, G. I. Dzhardimalieva, Russ. J. Inorg. Chem., 2020, 65, 61; DOI: https://doi.org/10.1134/S0036023620010143.

    Article  CAS  Google Scholar 

  70. L. I. Yudanova, V. A. Logvinenko, L. A. Sheludyakova, N. F. Yudanov, P. P. Semyannikov, S. I. Kozhemyachenko, I. V. Korolkov, N. A. Rudina, A. V. Ishchenko, Russ. J. Inorg. Chem., 2014, 59, 1180; DOI: https://doi.org/10.1134/S0036023614100222.

    Article  CAS  Google Scholar 

  71. B. Want, M. D. Shah, J. Cryst. Growth, 2014, 389, 39; DOI: https://doi.org/10.1016/j.jcrysgro.2013.11.071.

    Article  CAS  Google Scholar 

  72. M. D. Shah, B. Want, Curr. Appl. Phys., 2015, 15, 64; DOI: https://doi.org/10.1016/j.cap.2014.11.002.

    Article  Google Scholar 

  73. S. J. Bora, B. K. Das, J. Solid State Chem., 2012, 192, 93; DOI: https://doi.org/10.1016/j.jssc.2012.03.009.

    Article  CAS  Google Scholar 

  74. S. J. Bora, B. K. Das, J. Mol. Struct., 2011, 999, 83; DOI: https://doi.org/10.1016/j.molstruc.2011.05.039.

    Article  CAS  Google Scholar 

  75. E. Y. Ionashiro, F. J. Caires, A. B. Siqueira, L. S. Lima, C. T. Carvalho, J. Therm. Anal. Calorim., 2012, 108, 1183; DOI: https://doi.org/10.1007/s10973-011-1660-0.

    Article  CAS  Google Scholar 

  76. F. S. Alves, L. H. Bembo, F. J. Caires, E. Y. Ionashiro, J. Therm. Anal. Calorim., 2013, 113, 739; DOI: https://doi.org/10.1007/s10973-012-2768-6.

    Article  CAS  Google Scholar 

  77. A. Téllez-López, V. Sánchez-Mendieta, J. Jaramillo-García, L. D. Rosales-Vázquez, I. García-Orozco, R. A. Morales-Luckie, R. Escudero, F. Morales-Leal, Transit. Met. Chem., 2016, 41, 879; DOI: https://doi.org/10.1007/s11243-016-0090-z.

    Article  Google Scholar 

  78. N. N. Volkova, G. I. Dzhardimalieva, B. E. Krisyuk, N. V. Chukanov, V. A. Shershnev, G. V. Shilov, Russ. Chem. Bull., 2016, 65, 2025; DOI: https://doi.org/10.1007/s11172-016-1547-0.

    Article  CAS  Google Scholar 

  79. I. E. Uflyand, V. A. Zhinzhilo, L. S. Lapshina, A. A. Novikova, V. E. Burlakova, G. I. Dzhardimalieva, Chemistry Select, 2018, 3, 8998; DOI: https://doi.org/10.1002/slct.201802155.

    CAS  Google Scholar 

  80. V. S. Savostyanov, D. A. Kritskaya, A. N. Ponomarev, A. D. Pomogailo, J. Polym. Sci. Part A, 1994, 32, 1201; DOI: https://doi.org/10.1002/pola.1994.080320701.

    Article  CAS  Google Scholar 

  81. Q. Li, H.-X. Shen, C. Liu, C.-F. Wang, L. Zhu, S. Chen, Prog. Polym. Sci., 2022, 127, 101514; DOI: https://doi.org/10.1016/j.progpolymsci.2022.101514.

    Article  CAS  Google Scholar 

  82. S. E. Zakiev, G. I. Dzhardimalieva, A. D. Pomogailo, Polym. Sci., Ser. B, 2017, 59, 210; DOI: https://doi.org/10.1134/S1560090417020105.

    Article  CAS  Google Scholar 

  83. S. E. Zakiev, V. A. Shershnev, Y. P. Kvurt, G. I. Dzhardimalieva, B. C. Yadav, Heliyon, 2019, 5, e02829; DOI: https://doi.org/10.1016/j.heliyon.2019.e02829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. I. E. Uflyand, V. A. Zhinzhilo, G. I. Dzhardimalieva, ChemistrySelect, 2019, 4, 2105; DOI: https://doi.org/10.1002/slct.201803894.

    Article  CAS  Google Scholar 

  85. P. Chaudhary, D. K. Maurya, S. Sikarwar, B. C. Yadav, G. I. Dzhardimalieva, R. Prakash, Eur. Polym. J., 2019, 112, 161; DOI: https://doi.org/10.1016/j.eurpolymj.2018.12.032.

    Article  CAS  Google Scholar 

  86. L. K. Gupta, Shripal, K. Kumar, B. C. Yadav, T. P. Yadav, G. I. Dzhardimalieva, I. E. Uflyand, Sens. Actuators A: Phys., 2021, 330, 112839; DOI: https://doi.org/10.1016/j.sna.2021.112839.

    Article  CAS  Google Scholar 

  87. L. K. Gupta, Shripal, K. Kumar, S. Sikarwar, B. C. Yadav, N. D. Golubeva, V. A. Shershnev, G. I. Dzhardimalieva, Colloid Polym. Sci., 2022, 300, 191; DOI: https://doi.org/10.1007/s00396-021-04924-4.

    Article  CAS  Google Scholar 

  88. O. V. Kharissova, V. A. Irkha, E. G. Drogan, V. E. Burlakova, V. A. Zhinzhilo, I. E. Uflyand, Tribol. Lett., 2021, 69, 16; DOI: https://doi.org/10.1007/s11249-020-01394-7.

    Article  CAS  Google Scholar 

  89. L. I. Yudanova, V. A. Logvinenko, L. A. Sheludyakova, I. V. Korol’kov, A. V. Ishchenko, N. A. Rudina, Russ. J. Coord. Chem., 2017, 43, 446; DOI: https://doi.org/10.1134/S1070328417070107.

    Article  CAS  Google Scholar 

  90. L. I. Yudanova, V. A. Logvinenko, L. A. Sheludyakova, I. V. Korolkov, N. A. Rudina, A. V. Ishchenko, N. I. Alferova, Russ. J. Phys. Chem. A, 2019, 93, 1327; DOI: https://doi.org/10.1134/S003602441907032X.

    Article  CAS  Google Scholar 

  91. A. Ghosh, S. Datta, T. Saha-Dasgupta, J. Phys. Chem. C, 2022, 126, 6847; DOI: https://doi.org/10.1021/acs.jpcc.2c01096.

    Article  CAS  Google Scholar 

  92. A. D. Pomogailo, G. I. Dzhardimalieva, A. S. Rozenberg, V. A. Shershnev, M. Leonovich, Russ. Chem. Bull., 2011, 60, 1476; DOI: https://doi.org/10.1007/s11172-011-0220-x.

    Article  CAS  Google Scholar 

  93. G. I. Dzhardimalieva, S. A. Semenov, E. I. Knerelman, G. I. Davydova, K. A. Kydralieva, J. Inorg. Organomet. Polym. Mater., 2016, 26, 1441; DOI: https://doi.org/10.1007/s10904-016-0421-8.

    Article  CAS  Google Scholar 

  94. V. Yu. Musatova, S. A. Semenov, D. V. Drobot, A. S. Pronin, A. D. Pomogailo, G. I. Dzhardimalieva, V. I. Popenko, Russ. J. Inorg. Chem., 2016, 61, 1111; DOI: https://doi.org/10.1134/S0036023616090163.

    Article  CAS  Google Scholar 

  95. L. I. Yudanova, V. A. Logvinenko, N. F. Yudanov, N. A. Rudina, A. V. Ishchenko, P. P. Semyannikov, L. A. Sheludyakova, N. I. Alferova, Russ. J. Coord. Chem., 2013, 39, 415; DOI: https://doi.org/10.1134/S1070328413050102.

    Article  CAS  Google Scholar 

  96. L. I. Yudanova, V. A. Logvinenko, I. V. Korol’kov, A. V. Ishchenko, N. A. Rudina, Russ. J. Phys. Chem. A, 2018, 92, 2247; DOI: https://doi.org/10.1134/S003602441811047X.

    Article  CAS  Google Scholar 

  97. C. P. Sakthi Dharan, M. A. Polozov, V. V. Polozova, S. A. Nayfert, D. A. Zherebtsov, S. V. Taskaev, S. V. Merzlov, V. V. Avdin, Russ. J. Phys. Chem. A, 2020, 94, 1311; DOI: https://doi.org/10.1134/S0036024420070250.

    Article  CAS  Google Scholar 

  98. I. E. Uflyand, V. A. Zhinzhilo, V. V. Tkachev, R. K. Baimuratova, G. I. Dzhardimalieva, E. G. Drogan, V. E. Burlakova, M. E. Sokolov, V. T. Panyushkin, J. Mol. Struct., 2022, 1250, 131909; DOI: https://doi.org/10.1016/j.molstruc.2021.131909.

    Article  CAS  Google Scholar 

  99. E. S. Sorin, R. K. Baimuratova, D. A. Chernyayev, D. V. Korchagin, G. I. Dzhardimalieva, I. E. Uflyand, Key Eng. Mater., 2021, 899, 37; DOI: https://doi.org/10.4028/www.scientific.net/KEM.899.37.

    Article  Google Scholar 

  100. I. E. Uflyand, V. A. Zhinzhilo, G. I. Dzhardimalieva, J. Inorg. Organomet. Polym. Mater., 2020, 30, 965; DOI: https://doi.org/10.1007/s10904-019-01227-8.

    Article  CAS  Google Scholar 

  101. I. E. Uflyand, V. A. Zhinzhilo, E. G. Drogan, D. A. Ostapenko, A. A. Novikova, V. E. Burlakova, G. I. Dzhardimalieva, J. Coord. Chem., 2019, 72, 796; DOI: https://doi.org/10.1080/00958972.2019.1587414.

    Article  CAS  Google Scholar 

  102. S. A. Voitsikhovskaya, M. E. Sokolov, V. T. Panyushkin, V. G. Vlasenko, Ya. V. Zubavichus, Russ. J. Inorg. Chem., 2015, 60, 219; DOI: https://doi.org/10.1134/S0036023615020217.

    Article  CAS  Google Scholar 

  103. L. I. Yudanova, V. A. Logvinenko, L. A. Sheludyakova, A. V. Ishchenko, N. A. Rudina, Russ. J. Phys. Chem. A, 2017, 91, 136; DOI: https://doi.org/10.1134/S0036024417010320.

    Article  CAS  Google Scholar 

  104. V. A. Shershnev, G. I. Dzhardimalieva, D. P. Kiryuhin, V. A. Zhorin, A. D. Pomogailo, Russ. Chem. Bull., 2013, 62, 1649; DOI: https://doi.org/10.1007/s11172-013-0239-2.

    Article  CAS  Google Scholar 

  105. P. Dallas, A. B. Bourlinos, P. Komninou, M. Karakassides, D. Niarchos, Nanoscale Res. Lett., 2009, 4, 1358; DOI: https://doi.org/10.1007/s11671-009-9405-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. A. A. El-Gendy, T. Almugaiteeb, E. E. Carpenter, J. Magn. Magn. Mater., 2013, 348, 136; DOI: https://doi.org/10.1016/j.jmmm.2013.08.022.

    Article  CAS  Google Scholar 

  107. A. A. El-Gendy, M. Qian, Z. J. Huba, S. N. Khanna, E. E. Carpenter, Appl. Phys. Lett., 2014, 104, 023111; DOI: https://doi.org/10.1063/1.4862260.

    Article  Google Scholar 

  108. Z. J. Huba, E. E. Carpenter, Dalton Trans., 2014, 43, 12236; DOI: https://doi.org/10.1039/C4DT012.

    Article  CAS  PubMed  Google Scholar 

  109. A. Zotti, A. Borriello, S. Zuppolini, V. Antonucci, M. Giordano, A. D. Pomogailo, V. A. Lesnichaya, N. D. Golubeva, A. N. Bychkov, G. I. Dzhardimalieva, M. Zarrelli, Eur. Polym. J., 2015, 71, 140; DOI: https://doi.org/10.1016/j.eurpolymj.2015.07.052.

    Article  CAS  Google Scholar 

  110. G. I. Dzhardimalieva, I. E. Uflyand, J. Coord. Chem., 2019, 72, 1425; DOI: https://doi.org/10.1080/00958972.2019.1612884.

    Article  CAS  Google Scholar 

  111. J. Z. Mbese, P. A. Ajibade, J. Nano Res., 2018, 54, 158; DOI: https://doi.org/10.4028/www.scientific.net/JNanoR.54.158.

    Article  CAS  Google Scholar 

  112. N. H. M. Yarkandi, J. Adv. Chem., 2014, 7, 1395; DOI: https://doi.org/10.24297/jac.v7i3.2381.

    Article  Google Scholar 

  113. S. M. A. Katib, J. Therm. Anal. Calorim., 2010, 103, 647; DOI: https://doi.org/10.1007/s10973-010-1009-0.

    Article  Google Scholar 

  114. I. E. Uflyand, V. A. Zhinzhilo, V. E. Burlakova, Friction, 2019, 7, 93; DOI: https://doi.org/10.1007/s40544-019-0261-y.

    Article  Google Scholar 

  115. L. Liu, M. Zhou, X. Li, L. Jin, G. Su, Y. Mo, L. Li, H. Zhu, Y. Tian, Materials, 2018, 11, 1314; DOI: https://doi.org/10.3390/ma11081314.

    Article  PubMed Central  Google Scholar 

  116. A. Kotia, P. Rajkhowa, G. S. Rao, S. K. Ghosh, Heat Mass Transfer, 2018, 54, 3493; DOI: https://doi.org/10.1007/s00231-018-2351-1.

    Article  Google Scholar 

  117. J. C. Spear, B. W. Ewers, J. D. Batteas, Nano Today, 2015, 10, 301; DOI: https://doi.org/10.1016/j.nantod.2015.04.003.

    Article  CAS  Google Scholar 

  118. Y. Wang, Q. J. Wang, C. Lin, F. Shi, Tribol. Trans., 2006, 49, 526; DOI: https://doi.org/10.1080/10402000600846110.

    Article  CAS  Google Scholar 

  119. I. E. Uflyand, V. A. Zhinzhilo, E. G. Drogan, D. A. Ostapenko, A. A. Novikova, V. E. Burlakova, G. I. Dzhardimalieva, J. Coord. Chem., 2019, 72, 796; DOI: https://doi.org/10.1080/00958972.2019.1587414.

    Article  CAS  Google Scholar 

  120. I. E. Uflyand, V. A. Zhinzhilo, E. A. Mukhanova, E. V. Karyukov, M. A. Tautieva, D. A. Ostapenko, V. E. Burlakova, G. I. Dzhardimalieva, Z. Anorg. Allg. Chem., 2019, 645, 758; DOI: https://doi.org/10.1002/zaac.201900018.

    Article  CAS  Google Scholar 

  121. M. Gulzar, H. H. Masjuki, M. Varman, M. A. Kalam, R. A. Mufti, N. W. M. Zulkifli, R. Zahid, Tribol. Int., 2015, 88, 271; DOI: https://doi.org/10.1016/j.triboint.2015.03.035.

    Article  CAS  Google Scholar 

  122. Q. Dong, Z. Meng, C.-L. Ho, H. Guo, W. Yang, I. Manners, L. Xu, W.-Y. Wong, Chem. Soc. Rev., 2018, 47, 4934; DOI: https://doi.org/10.1039/C7CS00599G.

    Article  CAS  PubMed  Google Scholar 

  123. Z. Ruan, Z. Li, Polym. Chem., 2020, 11, 764; DOI: https://doi.org/10.1039/C9PY01517E.

    Article  CAS  Google Scholar 

  124. L. Tan, B. Liu, K. Siemensmeyer, U. Glebe, A. Böker, J. Colloid Interface Sci., 2018, 526, 124; DOI: https://doi.org/10.1016/j.jcis.2018.04.074.

    Article  CAS  PubMed  Google Scholar 

  125. V. A. Shershnev, G. V. Shilov, G. I. Dzhardimalieva, A. D. Pomogailo, M. Izydorzak, M. Leonowicz, Macromol. Symp., 2012, 317–318, 180; DOI: https://doi.org/10.1002/masy.201100131.

    Article  Google Scholar 

  126. A. S. Pronin, S. A. Semenov, D. V. Drobot, E. V. Volchkova, G. I. Dzhardimalieva, Russ. J. Inorg. Chem., 2020, 65, 1173; DOI: https://doi.org/10.1134/S0036023620080136.

    Article  CAS  Google Scholar 

  127. A. S. Pronin, S. A. Semenov, D. V. Drobot, G. I. Dzhardimalieva, Russ. J. Inorg. Chem., 2018, 63, 1041; DOI: https://doi.org/10.1134/S0036023618080193.

    Article  CAS  Google Scholar 

  128. S. A. Semenov, D. V. Drobot, V. Yu. Musatova, A. S. Pronin, A. D. Pomogailo, G. I. Dzhardimalieva, V. I. Popenko, Russ. J. Inorg. Chem., 2015, 60, 897; DOI: https://doi.org/10.1134/S0036023615080161.

    Article  CAS  Google Scholar 

  129. S. A. Semenov, V. Yu. Musatova, D. V. Drobot, G. I. Dzhardimalieva, Russ. J. Inorg. Chem., 2018, 63, 1424; DOI: https://doi.org/10.1134/S0036023618110153.

    Article  CAS  Google Scholar 

  130. S. A. Semenov, V. Yu. Musatova, D. V. Drobot, G. I. Dzhardimalieva, Russ. J. Inorg. Chem., 2019, 64, 786; DOI: https://doi.org/10.1134/S0036023619060135.

    Article  CAS  Google Scholar 

  131. S. A. Voytsihovskaya, M. E. Sokolov, V. T. Panyushkin, P. Yu. Gromov, A. A. Shcherbina, V. V. Matveev, J. Appl. Spectrosc. (JAS), 2013, 79, 988; DOI: https://doi.org/10.1007/s10812-013-9701-z.

    Article  CAS  Google Scholar 

  132. RF Patent 2475878 (13), published April 12, 2002 (in Russian).

  133. A. M. Sanjuán, J. A. Reglero Ruiz, F. C. García, J. M. García, React. Funct. Polym., 2018, 133, 103; DOI: https://doi.org/10.1016/j.reactfunctpolym.2018.10.007.

    Article  Google Scholar 

  134. N. Gao, Z. Mu, J. Li, Int. J. Hydrogen Energy, 2019, 44, 14085; DOI: https://doi.org/10.1016/j.ijhydene.2019.03.267.

    Article  CAS  Google Scholar 

  135. R. S. Andre, R. C. Sanfelice, A. Pavinatto, L. H. C. Mattoso, D. S. Correa, Mater. Des., 2018, 156, 154; DOI: https://doi.org/10.1016/j.matdes.2018.06.041.

    Article  CAS  Google Scholar 

  136. B. Mondal, P. K. Gogoi, ACS Appl. Electron. Mater., 2022, 4, 59; DOI: https://doi.org/10.1021/acsaelm.1c00841.

    Article  CAS  Google Scholar 

  137. T. Fernandes, A. L. Daniel-da-Silva, T. Trindade, Coord. Chem. Rev., 2022, 460, 214483; DOI: https://doi.org/10.1016/j.ccr.2022.214483.

    Article  CAS  Google Scholar 

  138. P. V. Adhyapak, A. M. Kasabe, A. D. Bang, J. Ambekar, S. K. Kulkarni, RSC Adv., 2022, 12, 1157; DOI: https://doi.org/10.1039/d1ra07510a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. P. Chaudhary, R. K. Tripathi, B. C. Yadav, D. K. Maurya, N. D. Golubeva, E. I. Knerelman, G. I. Dzhardimalieva, I. E. Uflyand, Mater. Adv., 2020, 1, 2804; DOI: https://doi.org/10.1039/D0MA00389A.

    Article  CAS  Google Scholar 

  140. S. Sikarwar, B. C. Yadav, R. K. Sonker, G. I. Dzhardimalieva, J. K. Rajput, Appl. Surf. Sci., 2019, 479, 326; DOI: https://doi.org/10.1016/j._psusc.2019.02.108.

    Article  CAS  Google Scholar 

  141. S. Singh, A. Singh, B. C. Yadav, P. Tandon, A. Shukla, V. A. Shershnev, G. I. Dzhardimalieva, N. D. Golubeva, A. D. Pomogailo, Sens. Actuators B, 2014, 192, 503; DOI: https://doi.org/10.1016/j.snb.2013.11.002.

    Article  CAS  Google Scholar 

  142. D. A. Pomogailo, S. Singh, M. Singh, B. C. Yadav, S. I. Pomogailo, G. I. Dzhardimalieva, K. A. Kydralieva, Inorg. Mater., 2014, 50, 296; DOI: https://doi.org/10.1134/S0020168514030108.

    Article  CAS  Google Scholar 

  143. S. Singh, A. Singh, B. C. Yadav, P. Tandon, S. Kumar, R. R. Yadav, S. I. Pomogailo, G. I. Dzhardimalieva, A. D. Pomogailo, Sens. Actuators B, 2015, 207, 460; DOI: https://doi.org/10.1016/j.snb.2014.10.047.

    Article  CAS  Google Scholar 

  144. B. C. Yadav, S. Sikarwar, R. Yadav, P. Chaudhary, G. I. Dzhardimalieva, N. D. Golubeva, J. Mater. Sci.: Mater. Electron., 2018, 29, 7770; DOI: https://doi.org/10.1007/s10854-018-8774-0.

    CAS  Google Scholar 

  145. L. Pavko, M. Gatalo, G. Križan, J. Križan, K. Ehelebe, F. Ruiz-Zepeda, M. Šala, G. Dražić, M. Geuß, P. Kaiser, M. Bele, M. Kostelec, T. Đukić, N. Van de Velde, I. Jerman, S. Cherevko, N. Hodnik, B. Genorio, M. Gaberšček, ACS Appl. Energy Mater., 2021, 4, 13819; DOI: https://doi.org/10.1021/acsaem.1c02570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. C. Gao, F. Lyu, Y. Yin, Chem. Rev., 2021, 121, 834; DOI: https://doi.org/10.1021/acs.chemrev.0c00237.

    Article  CAS  PubMed  Google Scholar 

  147. B. Devadas, A. P. Periasamy, K. Bouzek, Coord. Chem. Rev., 2021, 444, 214062; DOI: https://doi.org/10.1016/j.ccr.2021.21406207K.

    Article  CAS  Google Scholar 

  148. A. Taher, M. Choudhary, D. Nandi, S. Siwal, K. Mallick, Appl. Organomet. Chem., 2018, 32, e3898; DOI: https://doi.org/10.1002/aoc.3898.

    Article  Google Scholar 

  149. R. Jayarajan, R. Kumar, J. Gupta, G. Dev, P. Kadu, D. Chatterjee, D. Bahadur, D. Maiti, S. K. Maji, J. Mater. Chem. A, 2019, 7, 4486; DOI: https://doi.org/10.1039/C8TA11134K.

    Article  CAS  Google Scholar 

  150. G. I. Dzhardimalieva, A. K. Zharmagambetova, S. E. Kudaibergenov, I. E. Uflyand, Kinet. Catal., 2020, 61, 198; DOI: https://doi.org/10.1134/S0023158420020044.

    Article  CAS  Google Scholar 

  151. A. D. Pomogailo, K. S. Kalinina, N. D. Golubeva, G. I. Dzhardimalieva, S. I. Pomogailo, E. I. Knerelman, S. G. Protasova, A. M. Ionov, Kinet. Catal., 2015, 56, 694; DOI: https://doi.org/10.1134/S0023158415050158.

    Article  CAS  Google Scholar 

  152. P. P. G. Dessai, V. M. S. Verenkar, J. Mater. Sci.: Mater. Electron., 2018, 29, 6924; DOI: https://doi.org/10.1007/s10854-018-8679-y.

    Google Scholar 

  153. Z. Kartal, A. Yavuz, J. Mol. Struct., 2018, 1155, 171; DOI: https://doi.org/10.1016/j.molstruc.2017.10.107.

    Article  CAS  Google Scholar 

  154. E. Papadopoulou, D. Delimaris, A. Denis, A. Machocki, T. Ioannides, Int. J. Hydrogen Energy, 2012, 37, 16375; DOI: https://doi.org/10.1016/j.ijhydene.2012.02.180.

    Article  CAS  Google Scholar 

  155. A. Skumiel, M. Izydorzak, M. Leonowicz, A. D. Pomogailo, G. I. Dzhardimalieva, Int. J. Thermophys., 2011, 32, 1973; DOI: https://doi.org/10.1007/s10765-011-1029-4.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Science Foundation (Project No. 22-13-00260).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Zhinzhilo.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2052–2075, October, 2022.

No human or animal subjects were used in this research.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dzhardimalieva, G.I., Uflyand, I.E. & Zhinzhilo, V.A. Metal-polymer nanocomposites based on metal-containing monomers. Russ Chem Bull 71, 2052–2075 (2022). https://doi.org/10.1007/s11172-022-3628-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3628-6

Key words

Navigation