Skip to main content
Log in

Copper-catalyzed reactions of 1-tert-butyloxycarbonyl-substituted gramine with diazo compounds

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Copper-catalyzed reactions of N-Boc-gramine with diazo compounds have been studied. In the case of ethyl diazoacetate, an indoline derivative with an exocyclic double bond is formed due to a [2,3]-sigmatropic rearrangement. The reaction of N-Boc-gramine with CF3-substituted diazo compounds, viz., diazocarboxylate and diazophosphonate, proceeds via a [1,2]-sigmatropic rearrangement with the formation of new derivatives of tryptophan and its P analogue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. M. Dewick, Medicinal Natural Products: A Biosynthetic Approach, John Wiley and Sons Inc., Chichester, 2009.

    Book  Google Scholar 

  2. D. H. R. Barton, K. Nakanishi, O. MethCohn, J. W. Kelly, Comprehensive Natural Products Chemistry, Pergamon Press, Oxford, 1999.

    Google Scholar 

  3. R. J. Sundberg, Indoles, Academic Press, London, 1996.

    Google Scholar 

  4. A. J. Kochanowska-Karamyan, M. T. Hamann, Chem. Rev., 2010, 110, 4489; DOI: https://doi.org/10.1021/cr900211p.

    Article  CAS  Google Scholar 

  5. S. E. O’Connor, J. J. Maresh, Nat. Prod. Rep., 2006, 23, 532; DOI: https://doi.org/10.1039/B512615K.

    Article  Google Scholar 

  6. S. Dadashpour, S. Emami, Eur. J. Med. Chem., 2018, 150, 9; DOI: https://doi.org/10.1016/j.ejmech.2018.02.065.

    Article  CAS  Google Scholar 

  7. G. W. Gribble, J. Chem. Soc., Perkin Trans., 2000, 1045; DOI: https://doi.org/10.1039/A909834H.

  8. D. G. Batt, J. X. Qiao, D. P. Modi, G. C. Houghton, D. A. Pierson, K. A. Rossi, J. M. Luettgen, R. M. Knabb, P. K. Jadhav, R. R. Wexler, Bioorg. Med. Chem. Lett., 2004, 14, 5269; DOI: https://doi.org/10.1016/j.bmcl.2004.08.037.

    Article  CAS  Google Scholar 

  9. V. Garg, R. K. Maurya, P. V. Thanikachalam, V. Monga, Eur. J. Med. Chem., 2019, 180, 562; DOI: https://doi.org/10.1016/j.ejmech.2019.07.019.

    Article  Google Scholar 

  10. A. Kumari, R. K. Singh, Bioorg. Chem., 2019, 89, 103021; DOI: https://doi.org/10.1016/j.bioorg.2019.103021.

    Article  CAS  Google Scholar 

  11. T. Gilchrist, Heterocyclic Chemistry, John Wiley and Sons, Inc., New York, 1992, 414 pp.

    Google Scholar 

  12. G. A. Chesnokov, A. A. Ageshina, A. V. Maryanova, S. A. Rzhevskiy, P. S. Gribanov, M. A. Topchiy, M. S. Nechaev, A. F. Asachenko, Russ. Chem. Bull., 2020, 69, 2370; DOI: https://doi.org/10.1007/s11172-020-3028-8.

    Article  CAS  Google Scholar 

  13. S. Cacchi, G. Fabrizi, Chem. Rev., 2005, 105, 2873; DOI: https://doi.org/10.1021/cr100403z.

    Article  CAS  Google Scholar 

  14. G. R. Humphrey, J. T. Kuethe, Chem. Rev., 2006, 106, 2875; DOI: https://doi.org/10.1021/cr0505270.

    Article  CAS  Google Scholar 

  15. M. Bandini, A. Eichholzer, Angew. Chem., Int. Ed., 2009, 48, 9608; DOI: https://doi.org/10.1002/anie.200901843.

    Article  CAS  Google Scholar 

  16. S. Patil, R. Patil, Curr. Org. Synth., 2007, 4, 201; DOI: https://doi.org/10.2174/157017907780598862.

    Article  CAS  Google Scholar 

  17. M. Bandini, A. Melloni, S. Tommasi, A. Umani-Ronchi, Synlett, 2005, 1199; DOI: https://doi.org/10.1055/s-2005-865210.

  18. J.-H. Lin, J.-C. Xiao, Eur. J. Org. Chem., 2011, 4536; DOI: https://doi.org/10.1002/ejoc.201100683.

  19. L. Wen, Q. Shen, X. Wan, L. Lu, J. Org. Chem., 2011, 76, 2282; DOI: https://doi.org/10.1021/jo1024333.

    Article  CAS  Google Scholar 

  20. X. Han, B. Liu, H.-B. Zhou, C. Dong, Tetrahedron: Asymmetry, 2012, 23, 1332; DOI: https://doi.org/10.1016/j.tetasy.2012.08.015.

    Article  CAS  Google Scholar 

  21. S. Fujii, Y.-F. Gong, M. Katayama, K. Kato, H. Kimoto, S. Tanaka, J. Fluorine Chem., 1999, 99, 5; DOI: https://doi.org/10.1016/S0022-1139(99)00124-4.

    Article  Google Scholar 

  22. X. Han, W. Ouyang, B. Liu, W. Wang, P. Tien, S. Wu, H.-B. Zhou, Org. Biomol. Chem., 2013, 11, 8463; DOI: https://doi.org/10.1039/C3OB41667D.

    Article  CAS  Google Scholar 

  23. M. Abid, L. Teixeira, B. Török, Org. Lett., 2008, 10, No. 5, 933; DOI: https://doi.org/10.1021/ol703095d.

    Article  CAS  Google Scholar 

  24. Organofluorine Compounds in Medicinal Chemistry and Biomedicinal Applications, Eds R. Filler, Y. Kobayashi, L. M. Yagupolski, Elsevier, Amsterdam, 1993.

    Google Scholar 

  25. S. Purser, P. R. Moore, S. Swallow, V. Gouverneur, Chem. Soc. Rev., 2008, 37, 320; DOI: https://doi.org/10.1039/B610213C.

    Article  CAS  Google Scholar 

  26. J. Nie, H.-C. Guo, D. Cahard, J.-A. Ma, Chem. Rev., 2011, 111, 455; DOI: https://doi.org/10.1021/cr100166a.

    Article  CAS  Google Scholar 

  27. P. Kirsch, Modern Fluoroorganic Chemistry, Wiley-VCH, Weinheim, 2004.

    Book  Google Scholar 

  28. K. Uneyama, Organofluorine Chemistry, Blackwell, Oxford, 2006.

    Book  Google Scholar 

  29. I. Ojima, Fluorine in Medicinal Chemistry and Chemical Biology, Wiley-Blackwell, Chichester, 2009.

    Book  Google Scholar 

  30. R. J. Lundgren, M. Stradiotto, Angew. Chem., Int. Ed., 2010, 49, 9322; DOI: https://doi.org/10.1002/anie.201000526.

    Article  CAS  Google Scholar 

  31. R. Smits, C. D. Cadicamo, K. Burger, B. Koksch, Chem. Soc. Rev., 2008, 37, 1727; DOI: https://doi.org/10.1039/B800310F.

    Article  CAS  Google Scholar 

  32. M. Salwiczek, E. K. Nyakatura, U. I. M. Gerling, S. Ye, B. Koksch, Chem. Soc. Rev., 2012, 41, 2135; DOI: https://doi.org/10.1039/C1CS15241F.

    Article  CAS  Google Scholar 

  33. I. E. Tsyshchuk, D. V. Vorobyeva, A. S. Peregudov, S. N. Osipov, Eur. J. Org. Chem., 2014, 2480; DOI: https://doi.org/10.1002/ejoc.201301734.

  34. D. V. Vorobyeva, T. P. Vasilyeva, S. N. Osipov, Russ. Chem. Bull., 2018, 67, 1459; DOI: https://doi.org/10.1007/s11172-018-2240-2.

    Article  CAS  Google Scholar 

  35. S. N. Osipov, A. S. Golubev, D. V. Vorobyeva, I. E. Yagafarova, T. P. Vasilyeva, Yu. Ya. Spiridonov, L. D. Protasova, N. D. Chkanikov, Agrokhimiya [Agrochemistry], 2016, 10, 57 (in Russian).

    Google Scholar 

  36. T. Ye, M. A. McKervey, Chem. Rev., 1994, 94, 1091; DOI: https://doi.org/10.1021/cr00028a010.

    Article  CAS  Google Scholar 

  37. D. V. Vorobyeva, A. K. Mailyan, A. S. Peregudov, N. M. Karimova, T. P. Vasilyeva, I. S. Bushmarinov, C. Bruneau, P. Dixneuf, S. N. Osipov, Tetrahedron, 2011, 67, 3524; DOI: https://doi.org/10.1016/j.tet.2011.03.031.

    Article  CAS  Google Scholar 

  38. G. Shi, Y. Xu, J. Org. Chem., 1990, 55, 3383; DOI: https://doi.org/10.1021/jo00297a075.

    Article  CAS  Google Scholar 

  39. N. M. Karimova, D. V. Vorobyeva, G. T. Shchetnikov, S. N. Osipov, Russ. Chem. Bull., 2010, 59, 107; DOI: https://doi.org/10.1007/s11172-010-0051-1.

    Article  CAS  Google Scholar 

  40. M. Huisman, M. Rahaman, S. Asad, S. Oehm, S. Novin, A. Rheingold, M. Hossain, Org. Lett., 2019, 21, 134; DOI: https://doi.org/10.1021/acs.orglett.8b03593.

    Article  CAS  Google Scholar 

  41. F. Bellezza, A. Cipiciani, R. Ruzziconi, S. Spizzichino, J. Fluorine Chem., 2008, 129, 97; DOI: https://doi.org/10.1016/j.jfluchem.2007.09.003.

    Article  CAS  Google Scholar 

  42. S. N. Osipov, N. M. Kobel’kova, A. F. Kolomiets, K. Pumpor, B. Koksch, K. Burger, Synlett, 2001, 8, 1287; DOI: https://doi.org/10.1055/s-2001-16054.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Vorobyeva.

Additional information

Dedicated to Academician of the Russian Academy of Sciences V. A. Tartakovsky on the occasion of his 90th birthday.

This work was performed under financial support of the Ministry of Science and Higher Education of the Russian Federation (Contract/agreement No. 075-00697-22-03) with the use of the equipment of the Center for Molecular Composition Studies of the A. N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences.

No human or animal subjects were used in this research.

The authors declare no competing interests.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1949–1954, September, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vorobyeva, D.V., Vasilyeva, T.P. & Osipov, S.N. Copper-catalyzed reactions of 1-tert-butyloxycarbonyl-substituted gramine with diazo compounds. Russ Chem Bull 71, 1949–1954 (2022). https://doi.org/10.1007/s11172-022-3613-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3613-0

Key words

Navigation