Skip to main content
Log in

Self-organization and physicochemical properties of the succinic acid—water system in the range of physiologically important temperatures

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

It is found that temperature in the range of 25–60 °C affects the size and ζ-potential of dispersed phase domains, as well as specific conductance (χ), pH, UV absorption spectra and fluorescence of the succinic acid (SA)—water system with an SA concentration of 1 · 10−5 mol L−1. It was demonstrated that there is an interrelation between non-monotonic temperature dependences of the size and ζ-potential of domains, optical density (A260), fluorescence intensity (λex = 260 nm, λem = 425 nm), the χ and pH values of the system, which have extrema at 40 and 50 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. N. Kondrashova, Yu. G. Kaminsky, E. I. Maevsky, Yantarnaya kislota v medicine, pischevoypromyshlennosti, sel’skom khozyaistve [Succinic acid in medicine, food industry, and agriculture], Izd-vo ONTIRAMN, Pushchino, 1996, 300 pp. (in Russian).

    Google Scholar 

  2. J. Koolman, K. H. Rohm, Taschenatlas der Biochemie, Georg Thieme Verlag, Stuttgart, New York, 2003, 478 p.

    Google Scholar 

  3. N. V. Khunderyakova, M. V. Zakharchenko, A. V. Zakharchenko, A. V. Suslikov, A. V. Volkov, T. Yu. Telesheva, M. N. Kondrashova, Biologitcheskie membranes: Zhurnal Membr. i Klet. Biol. [Biol. Membranes: J. Membranes. Cell Biol.], 2012, 29, 442 (in Russian).

    CAS  Google Scholar 

  4. A. C. Ariza, P. M. T. Deen, J. H. Robben, Front. Endocrinol., 2012, 3, 22; DOI: https://doi.org/10.3389/fendo.2012.00022.

    Article  Google Scholar 

  5. M. M. Kushnir, G. Komaromy-Hiller, B. Shushan, F. M. Urry, W. L. Roberts, Clin. Chem., 2001, 47, 1993; DOI: https://doi.org/10.1093/clinchem/47.11.1993.

    Article  CAS  Google Scholar 

  6. M. N. Kondrashova, Voprosy Biol., Med. i Farm. Khim. [Quest. Biol., Med. Pharmacol. Chem.], 2002, 1, 7 (in Russian).

    Google Scholar 

  7. W. He, F. J. P. Miao, D. C. H. Lin, R. T. Schwandner, Z. Wang, J. Gao, J.-L. Chen, H. H. I. Tian, L. Ling, Nature, 2004, 429, 188; DOI: https://doi.org/10.1038/nature02488.

    Article  CAS  Google Scholar 

  8. V. E. Radzinskii, I. V. Kuznetsova, Y. B. Uspenskaya, N. B. Repina, Y. K. Gusak, O. M. Zubova, D. I. Burchakov, A. A. Osmakova, Gynecol. Endocrinol., 2016, 32, 64; DOI: https://doi.org/10.1080/09513590.2016.1232686.

    Article  CAS  Google Scholar 

  9. T. T. Chen, E. I. Maevsky, M. L. Uchitel, Front. Endocrinol., 2015, 6; DOI: https://doi.org/10.3389/fendo.2015.00007.

  10. D. V. Kotlyarov, V. V. Kotlyarov, Yu. P. Fedulov, Phisiologicheski activnye veschestva v agrotekhnologiyakh [Physiologically Active Substances in Agricultural Technologies], Izd-vo of Kuban State Agrarian Univ., Krasnodar, 2016, 224 pp. (in Russian).

    Google Scholar 

  11. A. I. Konovalov, I. S. Ryzhkina, Russ. Chem. Bull., 2014, 63, 1; DOI: https://doi.org/10.1007/s11172-014-0388-y.

    Article  CAS  Google Scholar 

  12. I. S. Ryzhkina, S. Y. Sergeeva, L. I. Murtazina, L. R. Akhmetzyanova, T. V. Kuznetsova, I. V. Knyazev, A. M. Petrov, I. S. Dokuchaeva, A. I. Konovalov, Russ. Chem. Bull., 2019, 68, 334; DOI: https://doi.org/10.1007/s11172-019-2389-3.

    Article  CAS  Google Scholar 

  13. I. S. Ryzhkina, L. I. Murtazina, S. Y. Sergeeva, L. A. Kostina, D. A. Sharapova, M. D. Shevelev, A. I. Konovalov, Environ. Technol. Innov., 2021, 21, 101215; DOI: https://doi.org/10.1016/j.eti.2020.101215.

    Article  CAS  Google Scholar 

  14. I. S. Ryzhkina, L. I. Murtazina, L. A Kostina, I. S. Dokuchaeva, T. V. Kuznetsova, A. M. Petrov, A. I. Konovalov, Russ. Chem. Bull., 2021, 70, 1499; DOI: https://doi.org/10.1007/s11172-021-3245-9.

    Article  CAS  Google Scholar 

  15. A. V. Fedyaeva, A. V. Stepanov, I. V. Lyubushkina, T. P. Pobezhimova, E. G. Rikhvanov, Biochemistry (Moscow), 2014, 79, 1202; DOI: https://doi.org/10.1134/S0006297914110078.

    Article  CAS  Google Scholar 

  16. D. Chrétien, P. Bénit, H.-H. Ha, S. Keipert, R. El-Khoury, Y.-T. Chang, M. Jastroch, H. T. Jacobs, P. Rustin, M. Rak, PLoS Biol., 2018, 16, e2003992; DOI: https://doi.org/10.1371/journal.pbio.2003992.

    Article  Google Scholar 

  17. J. Qiao, C. Chen, D. Shangguan, X. Mu, S. Wang, L. Jiang, L. Qi, Anal. Chem., 2018, 90, 12553; DOI: https://doi.org/10.1021/acs.analchem.8b02496.

    Article  CAS  Google Scholar 

  18. J. Liu, J. Liang, C. Wu, Y. Zhao, Anal. Chem., 2019, 91, 6902; DOI: https://doi.org/10.1021/acs.analchem.9b01294.

    Article  CAS  Google Scholar 

  19. N. Lane, PloS Biol., 2018, 16, e2005113; DOI: https://doi.org/10.1371/journal.pbio.2005113.

    Article  Google Scholar 

  20. P. Renati, Z. Kovacs, A. De Ninno, R. Tsenkova, J. Mol. Liq., 2019, 292, 111449; DOI: https://doi.org/10.1016/j.molliq.2019.111449.

    Article  CAS  Google Scholar 

  21. L. M. Maestro, M. I. Marqués, E. Camarillo, D. Jaque, J. G. Solé, J. A. Gonzalo, F. Jaque, J. C. del Valle, F. Mallamace, H. E. Stanley, Int. J. Nanotechnol., 2016, 13, 667; DOI: https://doi.org/10.1504/IJNT.2016.079670.

    Article  CAS  Google Scholar 

  22. A. S. Kholmansky, APRIORI. Seriya: Estestvennye i tekhnitcheskie nauki [APRIORI. Ser.: Nat. Tech. Sci.], 2015, 1 https://cyberleninka.ru/article/n/dva-tipa-anomalnoy-termodinamiki-vody (in Russian).

  23. A. V. Orlova, N. N. Kondakov, Yu. F. Zuev, L. O. Kononov, Russ. Chem. Bull., 2018, 67, 2155; DOI: https://doi.org/10.1007/511172-018-2346-6.

    Article  CAS  Google Scholar 

  24. L. A. Bulavin, N. P. Malomuzh, Fizika Zhivogo [Phys. of the Living], 2010, 18, 16; https://www.researchgate.net/publication/260198066 (in Russian).

    CAS  Google Scholar 

  25. D. Hagmeyer, J. Ruesing, T. Fenske, H. W. Klein, C. Schmuck, W. Schrader, M. E. Minas da Piedade, M. Epple, RSC Adv., 2012, 2, 4690; DOI: https://doi.org/10.1039/c2ra01352e.

    Article  CAS  Google Scholar 

  26. A. Atahar, N. N. Mafy, M. M. Rahman, Y. A. Mollah, M. A. B. H. Susan, J. Mol. Liq., 2019, 294, 111612; DOI: https://doi.org/10.1016/j.molliq.2019.111612.

    Article  CAS  Google Scholar 

  27. I. S. Ryzhkina, S. Yu. Sergeeva, R. A. Safiullin, L. I. Murtazina, L. R. Sabirzyanova, M. D. Shevelev, M. K. Kadirov, A. I. Konovalov, Russ. Chem. Bull., 2017, 66, 1691; DOI: https://doi.org/10.1007/s11172-017-1942-1.

    Article  CAS  Google Scholar 

  28. I. S. Ryzhkina, Yu. V. Kiseleva, O. A. Mishina, L. I. Murtazina, A. I. Litvinov, M. K. Kadirov, A. I. Konovalov, Russ. Chem. Bull., 2015, 64, 579; DOI: https://doi.org/10.1007/s11172-015-0903-9.

    Article  CAS  Google Scholar 

  29. G. M. Artmann, Ch. Kelemen, D. Porst, G. Büldt, S. Chien, Biophys. J., 1998, 75, 3179; DOI: https://doi.org/10.1016/S0006-3495(98)77759-8.

    Article  CAS  Google Scholar 

  30. G. H. Pollack, The fourth phase of water, Ebner&Sons publishers, Seattle WA, USA, 2013, 358 p.; DOI: https://doi.org/10.3390/w5020638.

    Google Scholar 

  31. L. O. Kononov, RSC Adv., 2015, 5, 46718; DOI: https://doi.org/10.1039/c4ra17257d.

    Article  CAS  Google Scholar 

  32. T. A. Yinnon, Water, 2019, 10, 115; DOI: https://doi.org/10.14294/2019.2.

    Google Scholar 

  33. I. S. Ryzhkina, L. I. Murtazina, L. A. Kostina, D. A. Sharapova, M. D. Shevelev, E. R. Zainulgabidinov, A. M. Petrov, A. I. Konovalov, Russ. Chem. Bull., 2021, 70, 81; DOI: https://doi.org/10.1007/s11172-021-3060-3.

    Article  CAS  Google Scholar 

  34. I. Ryzhkina, L. Murtazina, K. Gainutdinov, A. Konovalov, Front. Chem., 2021, 9, 81; DOI: https://doi.org/10.3389/fchem.2021.623860.

    Article  Google Scholar 

  35. I. S. Ryzhkina, S. Yu. Sergeeva, Yu. V. Kiseleva, A. P. Timosheva, O. A. Salakhutdinova, M. D. Shevelev, A. I. Konovalov, Mendeleev Commun., 2018, 28, 66; DOI: https://doi.org/10.1016/j.mencom.2018.01.022.

    Article  CAS  Google Scholar 

  36. D. A. Khundzhua, S. V. Patsaeva, O. A. Trubetskoj, O. E. Trubetskaya, Mosc. Univ. Phys. Bull., 2017, 72, 68; DOI: https://doi.org/10.3103/S002713491701009X.

    Article  Google Scholar 

  37. S. Patsaeva, D. Khundzhua, O. A. Trubetskoj, O. E. Trubetskaya, J. Spectr., 2018, Article ID 3168320; DOI: https://doi.org/10.1155/2018/3168320.

  38. L. Ying, S. Chun-Yuan, L. Xiao-Sen, L. Jian, N. Xiao-Wu, Chinese Phys., 2007, 16, 1300; DOI: https://doi.org/10.1088/1009-1963/16/5/023.

    Article  Google Scholar 

  39. V. Elia, R. Oliva, E. Napoli, R. Germano, G. Pinto, L. Lista, M. Niccoli, D. Toso, G. Vitiello, M. Trifuoggi, A. Giarra, T. A. Yinnon, J. Mol. Liq., 2018, 268, 598; DOI: https://doi.org/10.1016/j.molliq.2018.07.045.

    Article  CAS  Google Scholar 

  40. B. H. Chai, J. M. Zheng, Q. Zhao, G. H. Pollack, J. Phys. Chem. A, 2008, 112, 2242; DOI: https://doi.org/10.1021/jp710105n.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Ryzhkina.

Additional information

This work was performed under financial support of the Russian Foundation for Basic Research (Project No. 20-03-00069).

No human or animal subjects were used in this research.

The authors declare no competing interests.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1914–1920, September, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryzhkina, I.S., Murtazina, L.I., Kostina, L.A. et al. Self-organization and physicochemical properties of the succinic acid—water system in the range of physiologically important temperatures. Russ Chem Bull 71, 1914–1920 (2022). https://doi.org/10.1007/s11172-022-3609-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3609-9

Key words

Navigation