Skip to main content
Log in

Hydrogen spillover on cerium-based catalysts

  • Reviews
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Data on hydrogen spillover (HS) in catalytic processes are systematized. Different opinions on the mechanism and participation of HS in various reactions are presented. Hydrogen spillover on CeO2-based systems and physicochemical methods of investigation of the phenomenon are considered. Tentative mechanisms of HS are described and the role of HS in catalytic hydrogenation reactions is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Geng, H. Li, ChemSusChem, 2022, 15, e202102495; DOI: https://doi.org/10.1002/cssc.202102495.

    Article  CAS  PubMed  Google Scholar 

  2. T. Liu, W. Gao, Q. Wang, M. Dou, Z. Zhang, F. Wang, Angew. Chem., Int. Ed., 2020, 59(46), 20423; DOI: https://doi.org/10.1002/anie.202009612.

    Article  CAS  Google Scholar 

  3. J. Park, S. Lee, H. E. Kim, A. Cho, S. Kim, Y. Ye, J. W. Han, H. Lee, J. H. Jang, J. Lee, Angew. Chem., Int. Ed., 2019, 58(45), 16038; DOI: https://doi.org/10.1002/anie.201908122.

    Article  CAS  Google Scholar 

  4. S. Khoobiar, J. Phys. Chem., 1964, 68, 411; DOI: https://doi.org/10.1021/j100784a503.

    Article  CAS  Google Scholar 

  5. J. H. Guo, S. J. Li, Y. Su, G. Chen, Int. J. Hydrogen Energy, 2020, 45(48), 25900; DOI: https://doi.org/10.1016/j.ijhydene.2019.12.146.

    Article  CAS  Google Scholar 

  6. R. Shi, H. Yan, J. Zhang, H. Gao, Y. Zhu, Y. Liu, X. Hu, Y. Zhang, L. Li, Small, 2021, 17(31), 2100852; DOI: https://doi.org/10.1002/smll.202100852.

    Article  CAS  Google Scholar 

  7. E. Boateng, A. Chen, Mater. Today Adv., 2020, 6, 100022; DOI: https://doi.org/10.1016/j.mtadv.2019.100022.

    Article  Google Scholar 

  8. K. Murakami, Y. Sekine, Phys. Chem. Chem. Phys., 2020, 22, 22852; DOI: https://doi.org/10.1039/D0CP04139D.

    Article  CAS  PubMed  Google Scholar 

  9. M. Choi, S. Yook, H. Kim, ChemCatChem, 2015, 7, 1048; DOI: https://doi.org/10.1002/cctc.201500032.

    Article  CAS  Google Scholar 

  10. X. Kong, L. Chen, Appl. Catal. A, 2014, 476, 34; DOI: https://doi.org/10.1016/j.apcata.2014.02.011.

    Article  CAS  Google Scholar 

  11. G. Kennedy, L. R. Baker, G. A. Somorjai, Angew. Chem., Int. Ed., 2014, 53, 3405; DOI: https://doi.org/10.1002/anie.201400081.

    Article  CAS  Google Scholar 

  12. M. M. Wang, L. He, Y. M. Liu, Y. Cao, H. Y. He, K. N. Fan, Green Chem., 2011, 13, 602; DOI: https://doi.org/10.1039/c0gc00937g.

    Article  CAS  Google Scholar 

  13. A. I. Mytareva, D. A. Bokarev, G. N. Baeva, A. Yu. Stakheev, Russ. Chem. Bull., 2020, 69, 2274; DOI: https://doi.org/10.1007/s11172-020-3043-9.

    Article  CAS  Google Scholar 

  14. E. M. Martsinkevich, A. A. Afaunov, V. R. Flid, L. G. Bruk, Russ. Chem. Bull., 2021, 70, 2031; DOI: https://doi.org/10.1007/s11172-021-3313-1.

    Article  CAS  Google Scholar 

  15. H. Shen, H. Li, Z. Yang, C. Li, Green Energy & Env., 2022; DOI: https://doi.org/10.1016/j.gee.2022.01.013.

  16. M. M. Bettahar, Catal. Rev., 2022, 64, 87; DOI: https://doi.org/10.1080/01614940.2020.1787771.

    Article  CAS  Google Scholar 

  17. D. Pyle, E. Gray, C. Webb, Int. J. Hydrogen Energy, 2016, 41(42), 19098; DOI: https://doi.org/10.1016/j.ijhydene.2016.08.061.

    Article  CAS  Google Scholar 

  18. Q. Liang, X. Wu, X. Wu, D. Weng, Catal. Lett., 2007, 119(3–4), 265; DOI: https://doi.org/10.1007/s10562-007-9228-0.

    Article  CAS  Google Scholar 

  19. J. Fan, Yu. Chen, X. Jiang, P. Yao, Y. Jiao, J. Wang, Ya. Chen, J. Environ. Chem. Eng., 2020, 8, 104236; DOI: https://doi.org/10.1016/j.jece.2020.104236.

    Article  CAS  Google Scholar 

  20. Y. Liu, J. Yang, J. Yang, L. Wang, Y. Wang, W. Zhan, Y. Guo, Y. Zhao, Y. Guo, Appl. Surf. Sci., 2021, 556, 149766; DOI: https://doi.org/10.1016/j.apsusc.2021.149766.

    Article  CAS  Google Scholar 

  21. M. V. Grabchenko, N. N. Mikheeva, G. V. Mamontov, M. A. Salaev, L. F. Liotta, O. V. Vodyankina, Catalysts, 2018, 8(7), 285; DOI: https://doi.org/10.3390/catal8070285.

    Article  Google Scholar 

  22. W. Jang, H. Kim, J. Shim, S. Yoo, K. Jeon, H. Na, Y. Lee, D. Jeong, J. Bae, I. Nah, H. Roh, Green Chem., 2018, 20, 1621; DOI: https://doi.org/10.1039/C7GC03605A.

    Article  CAS  Google Scholar 

  23. G. Xiao, S. Li, H. Li, L. Chen, Micropor. Mesopor. Mater., 2009, 120, 426; DOI: https://doi.org/10.1016/j.micromeso.2008.12.015.

    Article  CAS  Google Scholar 

  24. H. Lan, J. Zeng, B. Zhang, Y. Jiang, Res. Chem. Intermediat., 2019, 45, 1565; DOI: https://doi.org/10.1007/s11164-018-3694-4.

    Article  CAS  Google Scholar 

  25. A. Barroso-Bogeat, B. Núñez-Pérez, G. Blanco, J. M. Pintado, J. C. Hernández-Garrido, J. J. Calvino, Surface and Interface Analysis, 2018, 50, 1025; DOI: https://doi.org/10.1002/sia.6444.

    Article  CAS  Google Scholar 

  26. M. P. Kapoor, A. Raj, Y. Matsumura, Micropor. Mesopor. Mater., 2001, 44–45, 565; DOI: https://doi.org/10.1016/S1387-1811(01)00235-9.

    Article  Google Scholar 

  27. K. V. Vikanova, E. A. Redina, G. I. Kapustin, V. D. Nissenbaum, I. V. Mishin, E. M. Kostyukhin, L. M. Kustov, Ceramics Int., 2020, 46, 13980; DOI: https://doi.org/10.1016/j.ceramint.2020.02.197.

    Article  CAS  Google Scholar 

  28. K. Vikanova, M. Chernova, E. Redina, G. Kapustin, O. Tkachenko, L. Kustov, J. Chem. Technol. Biotechnol., 2021, 96, 2421; DOI: https://doi.org/10.1002/jctb.6785.

    Article  CAS  Google Scholar 

  29. E. Redina, K. Vikanova, G. Kapustin, I. Mishin, O. Tkachenko, L. Kustov, Eur. J. Org. Chem., 2019, 2019, 4159; DOI: https://doi.org/10.1002/ejoc.201900215.

    Article  CAS  Google Scholar 

  30. J. A. Rodriguez, D. C. Grinter, Z. Liu, R. M. Palomino, S. D. Senanayake, Chem. Soc. Rev., 2017, 46, 1824; DOI: https://doi.org/10.1039/c6cs00863a.

    Article  CAS  PubMed  Google Scholar 

  31. M. Salaev, A. Salaeva, T. Kharlamova, G. Mamontov, Appl. Catal., B, 2021, 295, 120286; DOI: https://doi.org/10.1016/j.apcatb.2021.120286.

    Article  CAS  Google Scholar 

  32. N. Evdokimenko, A. Kustov, K. Kim, I. Mishin, V. Nissenbaum, G. Kapustin, L. Kustov, Funct. Mater. Lett., 2020, 1, 2040004; DOI: https://doi.org/10.1142/S1793604720400044.

    Article  Google Scholar 

  33. R. Brayner, T. Coradin, F. Fiévet, Nanomaterials: A Danger or a Promise?: A Chemical and Biological Perspective, 2013; DOI: https://doi.org/10.1007/978-1-4471-4213-3.

  34. J. Lee, Y. Ryou, X. Chan, T. J. Kim, D. H. Kim, J. Phys. Chem. C, 2016, 120, 25870; DOI: https://doi.org/10.1021/acs.jpcc.6b08656.

    Article  CAS  Google Scholar 

  35. Y. Yang, S. Wang, Y. Jiang, X. Wu, C. Xia, R. Peng, Y. Lu, J. Phys. Chem. C, 2019, 123, 17092; DOI: https://doi.org/10.1021/acs.jpcc.9b02878.

    Article  CAS  Google Scholar 

  36. S. Zhang, Z. Xia, T. Ni, Z. Zhang, Y. Ma, Y. Qu, J. Catal., 2018, 359, 101; DOI: https://doi.org/10.1016/j.jcat.2018.01.004.

    Article  CAS  Google Scholar 

  37. Q. Wu, J. Ba, X. Yan, J. Bao, Z. Huang, S. Dou, D. Dai, T. Tang, W. Luo, D. Meng, Catal. Commun., 2017, 98, 34; DOI: https://doi.org/10.1016/j.catcom.2017.04.045.

    Article  CAS  Google Scholar 

  38. Z. Peng, Z. Li, Y-Q. Liu, S. Yan, J. Tong, D. Wang, Y. Ye, S. Li, Chem. Commun., 2017, 53, 5958; DOI: https://doi.org/10.1039/C7CC02235B.

    Article  CAS  Google Scholar 

  39. D. Kaya, D. Singh, S. Kincal, D. Uner, Catal. Today, 2019, 323, 141; DOI: https://doi.org/10.1016/j.cattod.2018.04.063.

    Article  CAS  Google Scholar 

  40. S. K. Konda, A. Chen, Mater. Today, 2016, 19(2), 100; DOI: https://doi.org/10.1016/j.mattod.2015.08.002.

    Article  CAS  Google Scholar 

  41. C. Pischetola, L. Collado, M. A. Keane, F. Cárdenas-Lizana, Molecules, 2018, 23(11), 1; DOI: https://doi.org/10.3390/molecules23112905.

    Article  Google Scholar 

  42. Y. Guo, S. Mei, K. Yuan, D. Wang, H. Liu, C. Yan, Y. Zhang, ACS Catal., 2018, 8, 6203; DOI: https://doi.org/10.1021/acscatal.7b04469.

    Article  CAS  Google Scholar 

  43. M. Liu, X. Wu, S. Liu, Y. Gao, Z. Chen, Y. Ma, R. Ran, D. Weng, Appl. Catal. B, 2017, 219, 231; DOI: https://doi.org/10.1016/j.apcatb.2017.07.058.

    Article  CAS  Google Scholar 

  44. M. A. Ocsachoque, J. I. Eugenio Russman, B. Irigoyen, D. Gazzoli, M. G. González, Mater. Chem. Phys., 2016, 172, 69; DOI: https://doi.org/10.1016/j.matchemphys.2015.12.062.

    Article  CAS  Google Scholar 

  45. F. Lucci, M. Marcinkowski, T. Lawton, E. Sykes, J. Phys. Chem. C, 2015, 119, 24351; DOI: https://doi.org/10.1021/acs.jpcc.5b05562.

    Article  CAS  Google Scholar 

  46. R. Prins, Chem. Rev., 2012, 112, 2714; DOI: https://doi.org/10.1021/cr200346z.

    Article  CAS  PubMed  Google Scholar 

  47. L. Chen, A. C. Cooper, G. P. Pez, H. Cheng, J. Phys. Chem. C, 2008, 112, 1755; DOI: https://doi.org/10.1021/jp7119137.

    Article  CAS  Google Scholar 

  48. F. Ahmed, M. Alam, R. Muira, A. Suzuki, H. Tsuboi, N. Hatakeyama, A. Endou, H. Takaba, M. Kubo, A. Miyamoto, Appl. Surf. Sci., 2010, 256, 7643; DOI: https://doi.org/10.1016/j.apsusc.2010.06.021.

    Article  CAS  Google Scholar 

  49. V. Sharma, P. A. Crozier, R. Sharma, J. B. Adams, Catal. Today, 2012, 180, 2; DOI: https://doi.org/10.1016/j.cattod.2011.09.009.

    Article  CAS  Google Scholar 

  50. S. Ø. Stub, E. Vøllestad, T. Norby, J. Phys. Chem. C, 2017, 121, 12817; DOI: https://doi.org/10.1021/acs.jpcc.7b03005.

    Article  CAS  Google Scholar 

  51. R. Manabe, S. Ø. Stub, T. Norby, Y. Sekine, Solid State Commun., 2018, 270, 45; DOI: https://doi.org/10.1016/j.ssc.2017.11.010.

    Article  CAS  Google Scholar 

  52. Y. Lykhach, J. Kubát, A. Neitzel, N. Tsud, M. Vorokhta, T. Skála, F. Dvorak, Y. Kosto, K. Prince, V. Matolin, V. Johanek, J. Myslivecek, J. Libuda, J. Chem. Phys., 2019, 151, 204703; DOI: https://doi.org/10.1063/1.5126031.

    Article  PubMed  Google Scholar 

  53. W. Karim, A. Kleibert, U. Hartfelder, A. Balan, J. Gobrecht, J. A. van Bokhoven, Y. Ekinci, Sci. Rep., 2016, 6(1), 18818; DOI: https://doi.org/10.1038/srep18818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. B. Reddy, K. Rao, G. Reddy, Catal. Lett., 2009, 131(1–2), 328; DOI: https://doi.org/10.1007/s10562-009-9945-7.

    Article  CAS  Google Scholar 

  55. X. Wang, C. Zhang, Z. Zhang, Y. Gai, Q. Li, J. Colloid. Interface Sci., 2022, 615, 19; DOI: https://doi.org/10.1016/j.jcis.2022.01.168.

    Article  CAS  PubMed  Google Scholar 

  56. K. Vikanova, E. Redina, G. Kapustin, M. Chernova, O. Tkachenko, V. Nissenbaum, L. Kustov, ACS Sust. Chem. Eng., 2021, 9, 1161; DOI: https://doi.org/10.1021/acssuschemeng.0c06560.

    Article  CAS  Google Scholar 

  57. I. Lucentini, A. Casanovas, J. Llorca, Int. J. Hydrogen Energy, 2019, 44, 12693; DOI: https://doi.org/10.1016/j.ijhydene.2019.01.154.

    Article  CAS  Google Scholar 

  58. G. Mamontov, M. Grabchenko, V. Sobolev, V. Zaikovskii, O. Vodyankina, Appl. Catal. A, 2016, 528, 161; DOI: https://doi.org/10.1016/j.apcata.2016.10.005.

    Article  CAS  Google Scholar 

  59. F. Jiang, S. Wang, B. Liu, J. Liu, L. Wang, Y. Xiao, Y. Xu, X. Liu, ACS Catal., 2020, 10, 11493; DOI: https://doi.org/10.1021/acscatal.0c03324.

    Article  CAS  Google Scholar 

  60. K. Liu, P. Yan, H. Jiang, Z. Xia, Z. Xu, S. Bai, Z. Zhang, J. Catal., 2019, 369, 396; DOI: https://doi.org/10.1016/j.jcat.2018.11.033.

    Article  CAS  Google Scholar 

  61. M. Mao, H. Lv, Y. Li, Y. Yang, M. Zeng, N. Li, X. Zhao, ACS Catal., 2016, 6, 418; DOI: https://doi.org/10.1021/acscatal.5b02371.

    Article  CAS  Google Scholar 

  62. S. Alayoglu, K. An, G. Melaet, S. Chen, F. Bernardi, L. W. Wang, A. Linderman, N. Musselwhite, J. Guo, M. Marcus, G. Somorjai, J. Phys. Chem. C, 2013, 117, 26608; DOI: https://doi.org/10.1021/jp407280e.

    Article  CAS  Google Scholar 

  63. I. Lucentini, G. García Colli, C. D. Luzi, I. Serrano, O. M. Martínez, J. Llorca, Appl. Catal. B, 2021, 286, 119896; DOI: https://doi.org/10.1016/j.apcatb.2021.119896.

    Article  CAS  Google Scholar 

  64. J. Terreni, E. Billeter, O. Sambalova, X. Liu, M. Trottmann, A. Sterzi, H. Geerlings, P. Trtik, A. Kaestner, A. Borgschulte, Phys. Chem. Chem. Phys., 2020, 22, 22979; DOI: https://doi.org/10.1039/d0cp03414b.

    Article  CAS  PubMed  Google Scholar 

  65. X. Yang, Y. Mueanngern, Q. A. Baker, L. R. Baker, Catal. Sci. Technol., 2016, 6, 6824; DOI: https://doi.org/10.1039/c6cy00858e.

    Article  CAS  Google Scholar 

  66. S. Wei, Y. Zhao, G. Fan, L. Yang, F. Li, Chem. Eng. J., 2017, 322, 234; DOI: https://doi.org/10.1016/j.cej.2017.04.026.

    Article  CAS  Google Scholar 

  67. A. Malik, S. Zaman, A. Al-Zahrani, M. Daous, H. Driss, L. Petrov, Appl. Catal. A, 2018, 560, 42; DOI: https://doi.org/10.1016/j.apcata.2018.04.036.

    Article  CAS  Google Scholar 

  68. G. Psofogiannakis, G. Froudakis, Chem. Commun., 2011, 47, 7933; DOI: https://doi.org/10.1039/c1cc11389e.

    Article  CAS  Google Scholar 

  69. N. R. Stuckert, L. Wang, R. T. Yang, Langmuir, 2010, 26, 11963; DOI: https://doi.org/10.1021/la101377u.

    Article  CAS  PubMed  Google Scholar 

  70. M. Qureshi, A. Garcia-Esparza, G. Jeantelot, S. Ould-Chikh, A. Aguilar-Tapia, J. Hazemann, J. Basset, D. Loffreda, T. Le Bahers, K. Takanabe, J. Catal., 2019, 376, 180; DOI: https://doi.org/10.1016/j.jcat.2019.06.045.

    Article  CAS  Google Scholar 

  71. H. Zhang, Y. Meng, G. Song, F. Li, Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry, 2016, 46, 940; DOI: https://doi.org/10.1080/15533174.2013.862651.

    Article  CAS  Google Scholar 

  72. S. Trasatti, J. Electroanalyt. Chem., 1972, 39, 163; DOI: https://doi.org/10.1016/S0022-0728(72)80485-6.

    Article  CAS  Google Scholar 

  73. H. Wendt, E. Spinacé, A. Oliveira Neto, M. Linardi, Quimica Nova, 2005, 28, 1066; DOI: https://doi.org/10.1590/S0100-40422005000600023.

    Article  CAS  Google Scholar 

  74. N. Acerbi, S.C. Edman Tsang, G. Jones, S. Golunski, P. Collier, Angew. Chem., Int. Ed., 2013, 52, 7737; DOI: https://doi.org/10.1002/anie.201300130.

    Article  CAS  Google Scholar 

  75. A. Ruban, B. Hammer, P. Stoltze, H. L. Skriver, J. K. Nørskov, J. Mol. Catal. A: Chem., 1997, 115, 421; DOI: https://doi.org/10.1016/S1381-1169(96)00348-2.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Vikanova.

Additional information

Dedicated to Academician of the Russian Academy of Sciences V. A. Tartakovsky on the occasion of his 90th birthday.

This work was financially supported by the Russian Science Foundation (Project No. 20-63-46013).

No human or animal subjects were used in this research.

The authors declare no competing interests.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1579–1592, August, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vikanova, K.V., Redina, E.A. & Kustov, L.M. Hydrogen spillover on cerium-based catalysts. Russ Chem Bull 71, 1579–1592 (2022). https://doi.org/10.1007/s11172-022-3567-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3567-2

Key words

Navigation