Skip to main content
Log in

Design of a bismuth ferrite nanocomposite in a polysaccharide matrix

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Bismuth ferrite nanobiocomposites obtained using a natural polysaccharide were studied. The morphology of new self-organizing nanobiocomposites, which were dispersed in water, was studied, and the sizes of bismuth ferrite nanoparticles were determined and found to vary in the range of 10–45 nm. The temperature dependence of magnetization of the bismuth ferrite-based nanocomposite with spatially separated particles and the dependencies of magnetization on the external magnetic field at temperatures 5 and 320 K were determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Qiao, C. Yang, M. Gao, J. Mater. Chem., 2009, 19, 6274; DOI: https://doi.org/10.1039/B902394A.

    Article  CAS  Google Scholar 

  2. A. Yu. Gervald, I. A. Gritskova, N. I. Prokopov, Russ. Chem. Rev., 2010, 79, 219; DOI: https://doi.org/10.1070/RC2010v079n03ABEH004068.

    Article  CAS  Google Scholar 

  3. M. R. Ibarra, N. G. Khlebtsov, J. Appl. Phys., 2019, 126, 170401; DOI: https://doi.org/10.1063/1.5130560.

    Article  CAS  Google Scholar 

  4. J. Mohapatra, A. Mitra, H. Tyagi, D. Bahadur, M. Aslam, Nanoscale, 2015, 20, 9174; DOI: https://doi.org/10.1039/C5NR00055F.

    Article  CAS  Google Scholar 

  5. D. O. Idisi, J. A. Oke, S. Sarma, S. J. Moloi, S. C. Ray, W. F. Pong, A. M. Strydom, J. Appl. Phys., 2019, 126, 035301; DOI: https://doi.org/10.1063/1.5099892.

    Article  CAS  Google Scholar 

  6. A. E. Urusov, A. V. Petrakova, A. V. Zherdev, B. B. Dzantiev, Nanotechnologies in Russia (Int. Ed.), 2017, 12, No. 11–12, 471; DOI: https://doi.org/10.1134/S1995078017050135.

    Article  CAS  Google Scholar 

  7. Z. Boekelheide, J. T. Miller, C. Grüttner, C. L. Dennis, J. Appl. Phys., 2019, 126, 043903; DOI: https://doi.org/10.1063/1.5094180.

    Article  CAS  Google Scholar 

  8. A. R. Akbashev, A. R. Kaul, Russ. Chem. Rev., 2011, 80, 1159; DOI: https://doi.org/10.1070/RC2011v080n12ABEH004239.

    Article  CAS  Google Scholar 

  9. M. Guan, X. Mu, H. Zhang, Y. Zhang, J. Xua, Q. Li, X. Wang, D. Cao, S. Lia, J. Appl. Phys., 2019, 126, 064505; DOI: https://doi.org/10.1063/1.5096345.

    Article  CAS  Google Scholar 

  10. S. Sagadevan, Z. Zaman, C. Rahman, F. Rafiquec, Mater. Res., 2018, 21, 2; DOI: https://doi.org/10.1590/1980-5373-mr-2016-0533.

    Article  CAS  Google Scholar 

  11. S. Sun, H. Zeng, D. B. Robinson, S. Raoux, P. M. Rice, S. X. Wang, G. Li, J. Am. Chem. Soc., 2004, 126, 273; DOI: https://doi.org/10.1021/ja0380852.

    Article  CAS  PubMed  Google Scholar 

  12. Ya. Albadi, A. A. Sirotkin, V. G. Semenov, R. Sh. Abiev, V. I. Popkov, Russ. Chem. Bull., 2020, 69, 1290: DOI: https://doi.org/10.1007/s11172-020-2900-x.

    Article  CAS  Google Scholar 

  13. N. Momin, A. Deshmukh, S. Radha, J. Nano Res., 2015, 34, 1; DOI: https://doi.org/10.4028/www.scientific.net/JNanoR.34.

    Article  CAS  Google Scholar 

  14. I. I. Macoed, A. F. Revinsky, Phys. Sol. State, 2015, 57, 1787; DOI: rep.brsu.by:80/handle/123456789/6193.

    Article  CAS  Google Scholar 

  15. L. A. Bashkirov, L. I. Krasovskaya, I. A. Velikanova, D. D. Polyko, Trudy BGTU. No. 3. Khimiya i tekhnologiya neorg. veshchestv [Trans. BSTU. No. 3. Chemistry and Technology of Inorg. Compounds], 2011, No. 3, 43 (in Russian).

  16. E. V. Tomina, N. S. Perov, I. Ya. Mittova, Yu. A. Alekhina, O. V. Stekleneva, N. A. Kurkin, Russ. Chem. Bull., 2020, 69, 941; DOI: https://doi.org/10.1007/s11172-020-2852-1.

    Article  CAS  Google Scholar 

  17. M. Rohrer, H. Bauer, J. Mintorovitch, M. Requardt, H.-J. Weinmann, Invest. Radiol., 2005, 40, 715; DOI: https://doi.org/10.1097/01.rli.0000184756.66360.d3.

    Article  PubMed  Google Scholar 

  18. I. Szafraniak-Wiza, B. Andrzejewski, B. Hilczer, Acta Physica Polonica. Ser. A, 2014, 126, 1029; DOI: https://doi.org/10.12693/APhysPolA.126.1029.

    Article  CAS  Google Scholar 

  19. J. Li, H. He, F. Lü, Y. Duan, D. Song, MRS Online Proceedings Library, 2011, 676, 77; DOI: https://doi.org/10.1557/PROC-676-Y7.7.

    Article  Google Scholar 

  20. T. K. Pani, B. Sundaray, J. Phys.: Condens. Matter, 2020, 32, 50, 5802.

    Google Scholar 

  21. T. V. Terziyan, A. P. Safronov, I. V. Beketov, A. I. Medvedev, S. F. Armas, G. V. Kurlyandskaya, Sensors, 2021, 21, 8311; DOI: https://doi.org/10.3390/s21248311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. V. V. Spiridonov, Yu. A. Antonova, V. S. Kusaya, M. I. Afanasov, S. S. Abramchuk, Russ. Chem. Bull., 2021, 70, 1675; DOI: https://doi.org/10.1007/s11172-021-3269-1.

    Article  CAS  Google Scholar 

  23. A. M. Demin, O. F. Kandarakov, A. S. Minin, D. K. Kuznetsov, M. A. Uimin, V. Ya. Shur, A. V. Belyavsky, V. P. Krasnov, Russ. Chem. Bull., 2021, 70, 1199; DOI: https://doi.org/10.1007/s11172-021-3205-4.

    Article  CAS  Google Scholar 

  24. A. M. Demin, A. V. Vakhrushev, M. S. Valova, A. S. Minin, D. K. Kuznetsov, M. A. Uimin, V. Ya. Shur, V. P. Krasnov, V. N. Charushin, Russ. Chem. Bull., 2021, 70, 987; DOI: https://doi.org/10.1007/s11172-021-3177-4.

    Article  CAS  Google Scholar 

  25. A. M. Demin, A. V. Vakhrushev, A. V. Mekhaev, M. A. Uimin, V. P. Krasnov, Russ. Chem. Bull., 2021, 70, 449; DOI: https://doi.org/10.1007/s11172-021-3107-5.

    Article  CAS  Google Scholar 

  26. G. Marinescu, L. Patron, D. C. Culita, C. Neagoe, I. Lepadatu, I. Balint, L. Bessais, C. B. Cizmas, J. Nanopart. Res., 2006, 8, 1045; DOI: https://doi.org/10.1007/s11051-006-9134-1.

    Article  CAS  Google Scholar 

  27. V. I. Dubrovina, S. A. Vityazeva, Zh. A. Konovalova, O. V. Yur’eva, T. P. Starovoitova, V. V. Voitkova, G. P. Aleksandrova, V. S. Polovinkina, Immunomoduliruyushchee deistvie metallosoderzhashchikh nanokompozitov [Immunomodulatory Effect of Metal-containing Nanocomposites], Megaprint, Irkutsk, 2017, 77 pp. (in Russian).

    Google Scholar 

  28. S. A. Medvedeva, G. P. Aleksandrova, L. A. Grishchenko, N. A. Tyukavkina, Russ. J. Gen. Chem., 2002, 72, 1480; DOI: https://doi.org/10.1023/A:1021654702739.

    Article  CAS  Google Scholar 

  29. G. P. Aleksandrova, L. A. Grishchenko, A. S. Bogomyakov, B. G. Sukhov, V. I. Ovcharenko, B. A. Trofimov, Russ. Chem. Bull., 2010, 59, 2318; DOI: https://doi.org/10.1007/s11172-010-0394-7.

    Article  CAS  Google Scholar 

  30. G. P. Aleksandrova, A. L. Semenov, L. A. Grishchenko, in Poryadok, besporyadok i svoistva oksidov [Order, Disorder and Properties of Oxides], Rostov-on-Don, 2009, p. 21 (in Russian).

  31. S. S. Khutsishvili, G. P. Aleksandrova, T. I. Vakul’skaya, B. G. Sukhov, IEEE Trans. Magn., 2021, 57, 5200309; DOI: https://doi.org/10.1109/TMAG.2021.3101904.

    Article  CAS  Google Scholar 

  32. G. P. Aleksandrova, A. S. Boymirzaev, I. V. Klimenkov, B. G. Sukhov, B. A. Trofimov, Nanotechnologies in Russia (Int. Ed.), 2019, 14, No. 1–2, 41.

    Article  CAS  Google Scholar 

  33. S. A. Medvedeva, G. P. Aleksandrova, Sintez i modifikatsiya polimerov [Synthesis and Modification of Polymers], Khimiya, Moscow, 2003, p. 328 (in Russian).

    Google Scholar 

  34. M. I. Ivanovskaya, A. I. Tolstik, D. A. Kotsikau, V. V. Pankov, Russ. J. Phys. Chem. A, 2009, 83, 2081; DOI: https://doi.org/10.1134/S0036024409120140.

    Article  CAS  Google Scholar 

  35. I. A. Salmani, T. Murtaza, M. Saleem Khan, M. Shahid Khan, AIP Conf. Proc., 2019, 2115, 030191; DOI: https://doi.org/10.1063/1.5113030.

    Article  CAS  Google Scholar 

  36. S. R. Dhanya, S. G. Nair, J. Satapathy, N. P. Kumar, AIP Conf. Proc., 2019, 2166, 020017; DOI: https://doi.org/10.1063/1.5131604.

    Article  CAS  Google Scholar 

  37. S. Sumathi, V. Lakshmipriya, J. Mater. Sci: Mater. Electron., 2017, 28, 2795; DOI: https://doi.org/10.1007/s10854-016-5860.

    CAS  Google Scholar 

  38. P. Roumanille, O. V. Baco-Carles, C. Bonningue, M. Gougeon, B. Duployer, P. Monfraix, H. L. Trong, P. Tailhades, Inorg. Chem., 2017, 56, 169, 5486; DOI: https://doi.org/10.1021/acs.inorgchem.7b00608.

    Article  CAS  Google Scholar 

  39. K. Sardar, K. Alia, S. Altaf, M. Sajjad, B. Saleema, L. Akbara, A. Sattar, Z. Alia, S. Ahmed, U. Elahi, E. U. Haq, A. Younus, J. Nanomater. Biostruct., 2020, 15, No. 1, 51; https://www.chalcogen.ro.

    Google Scholar 

  40. O. Amiri, M. R. Mozdianfar, M. Vahid, M. Salavati-Niasari, S. Gholamrezaei, J. High Temp. Mater. Process.; DOI: https://doi.org/10.1515/htmp-2015-0045.

  41. Y. Hu, L. Fei, Y. Zhang, J. Yuan, Y. Wang, H. Gu, J. Nanomat., 2011, Article ID 797639; DOI: https://doi.org/10.1155/2011/797639.

  42. L. P. Feoktistova, A. N. Sapozhnikov, G. P. Aleksandrova, S. A. Medvedeva, L. A. Grishchenko, Russ. J. Appl. Chem., 2002, 75, 1911; DOI: https://doi.org/10.1023/a:1023318927452.

    Article  CAS  Google Scholar 

  43. V. I. Popkov, O. V. Almjasheva, M. P. Schmidt, V. V. Gusarov, Russ. J. Gen. Chem., 2015, 85, 1370; DOI: https://doi.org/10.1134/S107036321506002X.

    Article  CAS  Google Scholar 

  44. V. M. Denisov, N. V. Belousova, V. P. Zhereb, L. T. Denisova, V. M. Skorikov, Zh. Sib. Feder. Un-ta. Seriya: Khimiya [J. Siberian Fed. Univ. Ser. Chem.], 2012, 5, 146 (in Russian).

    Google Scholar 

  45. G. P. Aleksandrova, G. F. Prozorova, I. V. Klimenkov, B. G. Sukhov, B. A. Trofimov, Bull. Russ. Acad. Sci., Physics, 2016, 80, 49; DOI: https://doi.org/10.7868/S036767651601004X.

    Article  CAS  Google Scholar 

  46. V. S. Pokatilov, V. S. Rusakov, A. S. Sigov, A. A. Belik, Phys. Sol. State, 2017, 59, 1535; DOI: https://doi.org/10.21883/FTT.2017.08.44754.438.

    Google Scholar 

  47. J. Lin, Z. Guo, M. Li, Q. Lin, K. Huang, Y. He, J. Appl. Biomater. Funct. Mater., 2018, 16, 93; DOI: https://doi.org/10.1177/2280800017754201.

    CAS  PubMed  Google Scholar 

  48. S. Chauhan, M. Arora, P. Sati, S. Chhoker, S. Katyal, M. Kumar, Ceram. Int., 2013, 39, 6399; DOI: https://doi.org/10.1016/j.ceramint.2013.01.066.

    Article  CAS  Google Scholar 

  49. V. Srinivas, A. T. Raghavender, K. Vijaya Kumar, Phys. Res. Int., 2016, 4835328; DOI: https://doi.org/10.1155/2016/4835328.

  50. C. Baker, S. I. Shah, S. K. Hasanain, J. Magn. Magn. Mater., 2004, 280, 412; DOI: https://doi.org/10.1016/j.jmmm.2004.03.037.

    Article  CAS  Google Scholar 

  51. N. Naushin, S. Shahriar, O. Roy, A. Sharif, J. Eng. Sci., 2020, 11, 123; DOI: https://doi.org/10.3329/jes.v11i1.49555.

    Article  Google Scholar 

Download references

Funding

The work was carried out within the framework of the state assignment for research of the Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, No. 121021000252-84 and with financial support of the Russian Science Foundation (Project No. 18-13-00380).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. P. Aleksandrova or V. I. Ovcharenko.

Additional information

Published in Russian in Izyestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1453–1463, July, 2022.

The studies were carried out using the facilities of the Baikal Center for Collective Use.

No human or animal subjects were used in this research.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleksandrova, G.P., Bogomyakov, A.S., Sapozhnikov, A.N. et al. Design of a bismuth ferrite nanocomposite in a polysaccharide matrix. Russ Chem Bull 71, 1453–1463 (2022). https://doi.org/10.1007/s11172-022-3551-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3551-x

Key words

Navigation