Skip to main content
Log in

Molecular and electronic structures of paramagnetic gallium complexes with differently charged o-quinone ligands

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

A series of new paramagnetic six-coordinate gallium complexes based on 3,6-di-tert-butyl-o-benzoquinone with N-donor ligands, such as pyridine (Py), 2,2′-dipyridyl (2,2′-dipy), and 4,4′-di-tert-butyl-2,2′-dipyridyl (But-dipy), were synthesized and structurally characterized. The molecular structures of the synthesized compounds were established by single-crystal X-ray diffraction. The complexes with bidentate N-donor ligands have the cis arrangement of the o-quinone ligands, whereas the compound with coordinated pyridine molecules has the trans arrangement of the diolate moieties. The synthesized compounds are characterized by spin density delocalization between the differently charged redox-active ligands. Regardless of the metal coordination environment, the near-IR region of the electronic absorption spectra of all the synthesized complexes show a low-intensity charge-transfer band between the catecholate and o-semiquinolate ligands, which was confirmed by DFT calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. G. Pierpont, Coord. Chem. Rev., 2001, 219–221, 415; DOI: https://doi.org/10.1016/S0010-8545(01)00342-3.

    Article  Google Scholar 

  2. I. V. Ershova, A. V. Piskunov, V. K. Cherkasov, Russ. Chem. Rev., 2020, 89, 1157; DOI: https://doi.org/10.1070/RCR4957.

    Article  CAS  Google Scholar 

  3. G. A. Abakumov, A. V. Piskunov, V. K. Cherkasov, I. L. Fedushkin, V. P. Ananikov, D. B. Eremin, E. G. Gordeev, I. P. Beletskaya, A. D. Averin, M. N. Bochkarev, A. A. Trifonov, U. M. Dzhemilev, V. A. Dyakonov, M. P. Egorov, A. N. Vereshchagin, M. A. Syroeshkin, V. V. Jouikov, A. M. Muzafarov, A. A. Anisimov, A. V. Arzumanyan, Y. N. Kononevich, M. N. Temnikov, O. G. Synyashin, Y. H. Budnikova, A. R. Burilov, A. A. Karasik, V. F. Mironov, P. A. Storozhenko, G. I. Shcherbakova, B. A. Troémov, S. V. Amosova, N. K. Gusarova, V. A. Potapov, V. B. Shur, V. V. Burlakov, V. S. Bogdanov, M. V. Andreev, Russ. Chem. Rev., 2018, 87, 393; DOI: https://doi.org/10.1070/RCR4795.

    Article  CAS  Google Scholar 

  4. W. Kaim, A. Das, J. Fiedler, S. Zalis, B. Sarkar, Coord. Chem. Rev., 2020, 404, 213114; DOI: https://doi.org/10.1016/j.ccr.2019.213114.

    Article  CAS  Google Scholar 

  5. A. Rajput, A. K. Sharma, S. K. Barman, A. Saha, R. Mukherjee, Coord. Chem. Rev., 2020, 414, 213240; DOI: https://doi.org/10.1016/j.ccr.2020.213240.

    Article  CAS  Google Scholar 

  6. K. I. Pashanova, A. I. Poddel’sky, A. V. Piskunov, Coord. Chem. Rev., 2022, 459, 214399; DOI: https://doi.org/10.1016/j.ccr.2021.214399.

    Article  CAS  Google Scholar 

  7. M. G. Chegerev, A. V. Piskunov, Russ. J. Coord. Chem., 2018, 44, 258; DOI: https://doi.org/10.1134/S1070328418040036.

    Article  CAS  Google Scholar 

  8. I. V. Ershova, A. V. Piskunov, Russ. J. Coord. Chem., 2020, 46, 154; DOI: https://doi.org/10.1134/S1070328420030021.

    Article  CAS  Google Scholar 

  9. M. P. Bubnov, A. V. Piskunov, A. A. Zolotukhin, I. N. Meshcheryakova, N. A. Skorodumova, A. S. Bogomyakov, E. V. Baranov, G. K. Fukin, V. K. Cherkasov, Russ. J. Coord. Chem., 2020, 46, 224 DOI: https://doi.org/10.1134/S107032842003001X.

    Article  CAS  Google Scholar 

  10. T. N. Kocherova, N. O. Druzhkov, A. S. Shavyrin, M. V. Arsenyev, E. V. Baranov, V. A. Kuropatov, V. K. Cherkasov, Russ. Chem. Bull., 2021, 70, 916; DOI: https://doi.org/10.1007/s11172-021-3167-6.

    Article  CAS  Google Scholar 

  11. T. N. Kocherova, N. O. Druzhkov, K. A. Martyanov, A. S. Shavyrin, M. V. Arsenyev, T. I. Kulikova, E. V. Baranov, V. A. Kuropatov, V. K. Cherkasov, Russ. Chem. Bull., 2020, 69, 2383; DOI: https://doi.org/10.1007/s11172-020-3051-9.

    Article  CAS  Google Scholar 

  12. D. A. Burmistrova, I. V. Smolyaninov, N. T. Berberova, Russ. Chem. Bull., 2020, 69, 990; DOI: https://doi.org/10.1007/s11172-020-2860-1.

    Article  CAS  Google Scholar 

  13. C. G. Pierpont, Coord. Chem. Rev., 2001, 216–217, 99; DOI: https://doi.org/10.1016/S0010-8545(01)00309-5.

    Article  Google Scholar 

  14. R. M. Buchanan, C. G. Pierpont, J. Am. Chem. Soc., 1980, 102, 4951; DOI: https://doi.org/10.1021/ja00535a021.

    Article  CAS  Google Scholar 

  15. S. O. Shapovalova, A. A. Guda, M. P. Bubnov, G. Smolentsev, Y. V. Rusalev, V. V. Shapovalov, A. A. Zolotukhin, V. K. Cherkasov, A. G. Starikov, V. G. Vlasenko, A. V. Soldatov, Chem. Lett., 2021, 50, 1933; DOI: https://doi.org/10.1246/cl.210426.

    Article  CAS  Google Scholar 

  16. M. P. Bubnov, N. A. Skorodumova, G. K. Fukin, R. V. Rumyantsev, A. A. Zolotukhin, A. S. Bogomyakov, V. K. Cherkasov, Polyhedron, 2021, 209, 115485; DOI: https://doi.org/10.1016/j.poly.2021.115485.

    Article  CAS  Google Scholar 

  17. T. Tezgerevska, K. G. Alley, C. Boskovic, Coord. Chem. Rev., 2014, 268, 23; DOI: https://doi.org/10.1016/j.ccr.2014.01.014.

    Article  CAS  Google Scholar 

  18. M. P. Bubnov, K. A. Kozhanov, N. A. Skorodumova, V. K. Cherkasov, Inorg. Chem., 2020, 59, 6679; DOI: https://doi.org/10.1021/acs.inorgchem.0c00547.

    Article  CAS  PubMed  Google Scholar 

  19. R. V. Rumyantcev, G. K. Fukin, G. V. Romanenko, I. A. Teplova, M. P. Bubnov, V. K. Cherkasov, ACS Omega, 2020, 5, 32792; DOI: https://doi.org/10.1021/acsomega.0c05344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. A. A. Zolotukhin, M. P. Bubnov, A. V. Arapova, G. K. Fukin, R. V. Rumyantcev, A. S. Bogomyakov, A. V. Knyazev, V. K. Cherkasov, Inorg. Chem., 2017, 56, 14751; DOI: https://doi.org/10.1021/acs.inorgchem.7b02597.

    Article  CAS  PubMed  Google Scholar 

  21. V. K. Cherkasov, G. A. Abakumov, E. V. Grunova, A. I. Poddelsky, G. K. Fukin, E. V. Baranov, Y. V. Kurskii, L. G. Abakumova, Chem. Eur. J., 2006, 12, 3916; DOI: https://doi.org/10.1002/chem.200501534.

    Article  CAS  PubMed  Google Scholar 

  22. I. V. Ershova, A. S. Bogomyakov, G. K. Fukin, A. V. Piskunov, Eur. J. Inorg. Chem., 2019, 2019, 938; DOI: https://doi.org/10.1002/ejic.201801348.

    Article  CAS  Google Scholar 

  23. A. V. Piskunov, I. V. Ershova, A. S. Bogomyakov, A. G. Starikov, G. K. Fukin, V. K. Cherkasov, Inorg. Chem., 2015, 54, 6090; DOI: DOI: https://doi.org/10.1021/acs.inorgchem.5b00520.

    Article  CAS  PubMed  Google Scholar 

  24. V. K. Cherkasov, E. V. Grunova, A. I. Poddel’sky, G. K. Fukin, Y. A. Kurskii, L. G. Abakumova, G. A. Abakumov, J. Organomet. Chem., 2005, 690, 1273; DOI: https://doi.org/10.1016/j.jorganchem.2004.11.049.

    Article  CAS  Google Scholar 

  25. A. V. Piskunov, A. V. Maleeva, A. S. Bogomyakov, A. G. Starikov, G. K. Fukin, Polyhedron, 2015, 102, 715; DOI: https://doi.org/10.1016/j.poly.2015.10.045.

    Article  CAS  Google Scholar 

  26. A. V. Piskunov, A. V. Maleeva, G. K. Fukin, V. K. Cherkasov, A. S. Bogomyakov, Inorg. Chim. Acta, 2017, 455, 213; DOI: https://doi.org/10.1016/j.ica.2016.10.030.

    Article  CAS  Google Scholar 

  27. A. V. Piskunov, A. V. Maleeva, A. S. Bogomyakov, G. K. Fukin, Russ. Chem. Bull., 2017, 66, 1618; DOI: https://doi.org/10.1007/s11172-017-1933-2.

    Article  CAS  Google Scholar 

  28. A. V. Piskunov, A. V. Maleeva, A. S. Bogomyakov, G. K. Fukin, Russ. J. Coord. Chem., 2019, 45, 309; DOI: https://doi.org/10.1134/S1070328419050026.

    Article  CAS  Google Scholar 

  29. A. V. Maleeva, I. V. Ershova, O. Y. Trofimova, K. V. Arsenyeva, I. A. Yakushev, A. V. Piskunov, Mendeleev Commun., 2022, 32, 83; DOI: https://doi.org/10.1016/j.mencom.2022.01.027.

    Article  CAS  Google Scholar 

  30. T. W. Myers, G. M. Yee, L. A. Berben, Eur. J. Inorg. Chem., 2013, 2013; DOI: https://doi.org/10.1002/ejic.201300192.

  31. A. V. Piskunov, A. V. Maleeva, G. K. Fukin, E. V. Baranov, A. S. Bogomyakov, V. K. Cherkasov, G. A. Abakumov, Dalton Trans., 2011, 40, 718; DOI: https://doi.org/10.1039/C0DT00673D.

    Article  CAS  PubMed  Google Scholar 

  32. A. V. Piskunov, I. N. Meshcheryakova, A. V. Maleeva, A. S. Bogomyakov, G. K. Fukin, V. K. Cherkasov, G. A. Abakumov, Eur. J. Inorg. Chem., 2014, 2014, 3252; DOI: https://doi.org/10.1002/ejic.201402116.

    Article  CAS  Google Scholar 

  33. K. I. Pashanova, V. O. Bitkina, I. A. Yakushev, M. V. Arsenyev, A. V. Piskunov, Molecules, 2021, 26, 4622; DOI: https://doi.org/10.3390/molecules26154622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. M. L. Kirk, D. A. Shultz, P. Hewitt, D. E. Stasiw, J. Chen, A. van der Est, Chem. Sci., 2021, 12, 13704; DOI: https://doi.org/10.1039/d1sc02965g.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. W. W. Kramer, L. A. Cameron, R. A. Zarkesh, J. W. Ziller, A. F. Heyduk, Inorg. Chem., 2014, 53, 8825; DOI: https://doi.org/10.1021/ic5017214.

    Article  CAS  PubMed  Google Scholar 

  36. L. A. Cameron, J. W. Ziller, A. F. Heyduk, Chem. Sci., 2016, 7, 1807; DOI: https://doi.org/10.1039/C5SC02703A.

    Article  CAS  PubMed  Google Scholar 

  37. J. Yang, D. K. Kersi, L. J. Giles, B. W. Stein, C. Feng, C. R. Tichnell, D. A. Shultz, M. L. Kirk, Inorg. Chem., 2014, 53, 4791; DOI: https://doi.org/10.1021/ic500217y.

    Article  CAS  PubMed  Google Scholar 

  38. N. F. Romashev, P. A. Abramov, I. V. Bakaev, I. S. Fomenko, D. G. Samsonenko, A. S. Novikov, K. K. H. Tong, P. V. D. D. Ahn, Y. V. Zubavichus, A. A. Ryadun, O. A. Patutina, M. N. Sokolov, M. V. Babak, A. L. Gushchin, Inorg. Chem., 2022, 61, 2105; DOI: https://doi.org/10.1021/acs.inorgchem.1c03314.

    Article  CAS  PubMed  Google Scholar 

  39. A. V. Artem’ev, M. Y. Petyuk, A. S. Berezin, A. L. Gushchin, M. N. Sokolov, I. Y. Bagryanskaya, Polyhedron, 2021, 209, 115484; DOI: https://doi.org/10.1016/j.poly.2021.115484.

    Article  CAS  Google Scholar 

  40. M. L. Kirk, D. A. Shultz, Coord. Chem. Rev., 2013, 257, 218; DOI: https://doi.org/10.1016/j.ccr.2012.07.007.

    Article  CAS  Google Scholar 

  41. J. A. Weinstein, M. T. Tierney, E. S. Davies, K. Base, A. A. Robeiro, M. W. Grinstaff, Inorg. Chem., 2006, 45, 4544; DOI: https://doi.org/10.1021/ic051733t.

    Article  CAS  PubMed  Google Scholar 

  42. B.-B. Cui, J.-H. Tang, J. Yao, Y.-W. Zhong, Angew. Chem., Int. Ed., 2015, 54, 9192; DOI: https://doi.org/10.1002/anie.201504584.

    Article  CAS  Google Scholar 

  43. D. Espa, L. Pilia, L. Marchiò, M. L. Mercuri, A. Serpe, E. Sessini, P. Deplano, Dalton Trans., 2013, 42, 12429; DOI: https://doi.org/10.1039/C3DT51407B.

    Article  CAS  PubMed  Google Scholar 

  44. Y. Liu, Z. Zhang, X. Chen, S. Xu, S. Cao, Dyes Pigm., 2016, 128, 179; DOI: https://doi.org/10.1016/j.dyepig.2016.01.026.

    Article  CAS  Google Scholar 

  45. A. V. Piskunov, A. V. Maleeva, I. N. Mescheryakova, G. K. Fukin, Eur. J. Inorg. Chem., 2012, 2012, 4318; DOI: https://doi.org/10.1002/ejic.201200535.

    Article  CAS  Google Scholar 

  46. A. V. Lobanov, G. A. Abakumov, G. A. Razuvaev, Dokl. AN SSSR [Dokl. Chem.], 1977, 235, 824 (in Russian).

    CAS  Google Scholar 

  47. C. W. Lange, B. J. Conklin, C. G. Pierpont, Inorg. Chem., 1994, 33, 1276; DOI: https://doi.org/10.1021/ic00085a012.

    Article  CAS  Google Scholar 

  48. A. V. Piskunov, I. A. Aivaz’yan, A. I. Poddel’sky, G. K. Fukin, E. V. Baranov, V. K. Cherkasov, G. A. Abakumov, Eur. J. Inorg. Chem., 2008, 2008, 1435; DOI: https://doi.org/10.1002/ejic.200701115.

    Article  CAS  Google Scholar 

  49. G. A. Abakumov, V. K. Cherkasov, A. V. Piskunov, A. V. Lado, G. K. Fukin, E. V. Baranov, Dokl. Chem., 2006, 410, 57; DOI: https://doi.org/10.1134/S0012500806090011.

    Article  CAS  Google Scholar 

  50. A. V. Piskunov, I. N. Mescheryakova, G. K. Fukin, A. S. Bogomyakov, G. V. Romanenko, V. K. Cherkasov, G. A. Abakumov, Heteroatom Chem., 2009, 20, 332; DOI: https://doi.org/10.1002/hc.20555.

    Article  CAS  Google Scholar 

  51. A. V. Piskunov, A. V. Maleeva, G. K. Fukin, E. V. Baranov, O. V. Kuznetsova, Russ. J. Coord. Chem., 2010, 36, 161; DOI: https://doi.org/10.1134/S1070328410030012.

    Article  CAS  Google Scholar 

  52. J. Emsley, Clarendon Press, Oxford, 1991, 251.

  53. M. I. Kabachnik, N. N. Bubnov, A. I. Prokofev, S. P. Solodovnikov, Science Rev. (B), 1981, 3, 197.

    CAS  Google Scholar 

  54. A. Ozarowski, B. R. McGarvey, A. El-Hadad, Z. Tian, D. G. Tuck, Inorg. Chem., 1993, 32, 841; DOI: https://doi.org/10.1021/ic00058a015.

    Article  CAS  Google Scholar 

  55. D. M. Adams, A. Dei, D. N. Hendrickson, A. L. Rheingold, Angew. Chem., Int. Ed., 1993, 32, 391; DOI: https://doi.org/10.1002/anie.199303911.

    Article  Google Scholar 

  56. D. D. Perrin, W. L. F. Armarego, D. R. Perrin, Purification of Laboratory Chemicals, Pergamon Press, Oxford, 1980.

    Google Scholar 

  57. V. A. Garnov, V. I. Nevodchikov, L. G. Abakumova, G. A. Abakumov, V. K. Cherkasov, Bull. Acad. Sci. USSR, Div. Chem. Sci., 1987, 36, 1728.

    Article  Google Scholar 

  58. Bruker, APEX3, SAINT, SADABS, Bruker, AXS Inc., Madison, Wisconsin, USA, 2016.

  59. CrysAlisPro Software System, Ver. 1.171.35.19, Rigaku Corporation, Wroclaw, Poland, 2011.

  60. G. M. Sheldrick, Acta Crystallogr., 2015, C71, 3; DOI: https://doi.org/10.1107/S2053229614024218.

    Google Scholar 

  61. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst., 2009, 42, 339; DOI: https://doi.org/10.1107/S0021889808042726.

    Article  CAS  Google Scholar 

  62. G. M. Sheldrick, Acta Crystallogr., 2015, A71, 3; DOI: https://doi.org/10.1107/S2053273314026370.

    Google Scholar 

Download references

Funding

The work was performed using the equipment of the Analytical Center of the G. A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences with the financial support from the Ministry of Science and Higher Education of the Russian Federation (Grant “Ensuring the Development of the Material and Technical Infrastructure of the Centers for Collective Use of Scientific Equipment,” unique identifier RF—2296.61321X0017, agreement number 075-15-2021-670) and the Joint Research Centre of Physical Methods of Research of the N. S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences (JRC PMR IGIC RAS).

This study was financially supported by the Council on Grants at the President of the Russian Federation (Program for State Support of Leading Scientific Schools of the Russian Federation, Grant NSh-403.2022.1.3).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Maleeva, I. A. Yakushev, R. R. Aysin or A. V. Piskunov.

Additional information

Dedicated to Academician of the Russian Academy of Sciences V. I. Ovcharenko on the occasion of his 70th birthday.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1441–1452, July, 2022.

No human or animal subjects were used in this research.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maleeva, A.V., Trofimova, O.Y., Ershova, I.V. et al. Molecular and electronic structures of paramagnetic gallium complexes with differently charged o-quinone ligands. Russ Chem Bull 71, 1441–1452 (2022). https://doi.org/10.1007/s11172-022-3550-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3550-y

Key words

Navigation