Skip to main content
Log in

Oxidation of benzyl alcohol in the copper-doped ZIF-8 metal-organic framework with encapsulated nitroxyl radical

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

A novel heterogeneous catalytic system based on the TEMPO nitroxyl radical encapsulated into the cavities of copper-doped ZIF-8 metal-organic framework was synthesized and characterized using ESR spectroscopy and powder X-ray diffraction. This system provided a highly selective (>99%) oxidation of benzyl alcohol to benzaldehyde.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Furukawa, K. E. Cordova, M. O’Keeffe, O. M. Yaghi, Science, 2013, 341, 4409; DOI: https://doi.org/10.1126/science.1230444.

    Article  CAS  Google Scholar 

  2. A. G. Slater, A. I. Cooper, Science, 2015, 348, 6238; DOI: https://doi.org/10.1126/science.aaa8075.

    Article  CAS  Google Scholar 

  3. M. S. Denny, J. C. Moreton, L. Benz, S. M. Cohen, Nature Rev. Mater., 2016, 1, 16078, DOI:https://doi.org/10.1038/natrevmats2016.78.

    Article  CAS  Google Scholar 

  4. X. Fang Zhong, X. Sun, Acta Pharmacol. Sin., 2020, 41, 928; DOI: https://doi.org/10.1038/s41401-020-0414-6.

    Article  CAS  Google Scholar 

  5. P. Gao, Y. Chen, W. Pan, N. Li, Z. Liu, B. Tang, Angew. Chem., Int. Ed., 2021, 60, 16763; DOI: https://doi.org/10.1002/anie.202102574.

    Article  CAS  Google Scholar 

  6. L. T. Zhang, Y. Zhou, S. T. Han, Angew. Chem., Int. Ed., 2021, 60, 15192; DOI: https://doi.org/10.1002/anie.202006402.

    Article  CAS  Google Scholar 

  7. A. J. Howarth, Y. Liu, P. Li, Z. Li, T. C. Wang, J. T. Hupp, O. K. Farha, Nat. Rev. Mater., 2016, 1, 15018; DOI: https://doi.org/10.1038/natrevmats.2015.18.

    Article  CAS  Google Scholar 

  8. C. Wang, D. Liu, W. Lin, J. Am. Chem. Soc., 2013, 135, 13222; DOI: https://doi.org/10.1021/ja308229p.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. M. J. Schultz, R. S. Adler, W. Zierkiewicz, T. Privalov, M. S. Sigman, J. Am. Chem. Soc., 2005, 127, 8499; DOI: https://doi.org/10.1021/ja050949r.

    Article  CAS  PubMed  Google Scholar 

  10. K. Mori, T. Hara, T. Mizugaki, K. Ebitani, K. Kaneda, J. Am. Chem. Soc., 2004, 126, 10657; DOI: https://doi.org/10.1021/ja0488683.

    Article  CAS  PubMed  Google Scholar 

  11. A. L. Tarasov, L. M. Kustov, A. A. Bogolyubov, A. S. Kiselyov, V. V. Semenov, Appl. Catal. A: General, 2009, 366, 227; DOI: https://doi.org/10.1016/j.apcata.2009.06.025.

    Article  CAS  Google Scholar 

  12. I. E. Markó, P. R. Giles, M. Tsukazaki, S. M. Brown, C. J. Urch, Science, 1996, 274, 2044; DOI: https://doi.org/10.1126/science.274.5295.2044.

    Article  PubMed  Google Scholar 

  13. Y. Kuang, N. M. Islam, Y. Nabae, T. Hayakawa, M. A. Kakimoto, Angew. Chem., Int. Ed., 2010, 49, 436; DOI: https://doi.org/10.1002/anie.200904362.

    Article  CAS  Google Scholar 

  14. D. M. Polyukhov, A. S. Poryvaev, A. S. Sukhikh, S. A. Gromilov, M. V. Fedin, ACS Appl. Mater. Interfaces, 2021, 13, 40830; DOI: https://doi.org/10.1021/acsami.1c12166.

    Article  PubMed  CAS  Google Scholar 

  15. J. M. Hoover, S. S. Stahl, J. Am. Chem. Soc., 2011, 133, 16901; DOI: https://doi.org/10.1021/ja206230h.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. J. Rabeah, U. Bentrup, R. Stößer, A. Brückner, Angew. Chem., Int. Ed., 2015, 54, 11791; DOI: https://doi.org/10.1002/anie.201504813.

    Article  CAS  Google Scholar 

  17. B. L. Ryland, S. S. Stahl, Angew. Chem., Int. Ed., 2014, 53, 8824; DOI: https://doi.org/10.1002/anie.201403110.

    Article  CAS  Google Scholar 

  18. B. Xu, J. P. Lumb, B. A. Arndtsen, Angew. Chem., Int. Ed., 2015, 54, 4208; DOI: https://doi.org/10.1002/anie.201411483.

    Article  CAS  Google Scholar 

  19. D. Antón-García, E. Edwardes Moore, M. A. Bajada, A. Eisenschmidt, A. R. Oliveira, I. A. C. Pereira, J. Warnan, E. Reisner, Nat. Synth., 2022, 1, 77; DOI: https://doi.org/10.1038/s44160-021-00003-2.

    Article  Google Scholar 

  20. A. Das, S. S. Stahl, Angew. Chem., Int. Ed., 2017, 56, 8892; DOI: https://doi.org/10.1002/anie.201704921.

    Article  CAS  Google Scholar 

  21. S. A. Bonke, T. Risse, A. Schnegg, A. Brückner, Nat. Rev. Methods Prim., 2021, 1, 1; DOI: https://doi.org/10.1038/s43586-021-00031-4.

    Article  CAS  Google Scholar 

  22. R. R. Schmidt, R. E. Martin, M. Pannier, F. Diederich, V. Gramlich, M. Hubrich, H. W. Spiess, Angew. Chem., Int. Ed., 1998, 20, 2834.

    Google Scholar 

  23. G. Sicoli, F. Wachowius, M. Bennati, C. Höbartner, Angew. Chem., Int. Ed., 2010, 49, 6443; DOI: https://doi.org/10.1002/anie.201000713.

    Article  CAS  Google Scholar 

  24. D. Bardelang, K. Banaszak, H. Karoui, A. Rockenbauer, M. Waite, K. Udachin, J. A. Ripmeester, C. I. Ratcliffe, O. Ouari, P. Tordo, J. Am. Chem. Soc., 2009, 131, 5402; DOI: https://doi.org/10.1021/ja900306m.

    Article  CAS  PubMed  Google Scholar 

  25. P. J. Wright, A. M. English, J. Am. Chem. Soc., 2003, 125, 8655; DOI: https://doi.org/10.1021/ja0291888.

    Article  CAS  PubMed  Google Scholar 

  26. J. E. Lovett, M. Hoffmann, A. Cnossen, A. T. J. Shutter, H. J. Hogben, J. E. Warren, S. I. Pascu, C. W. M. Kay, C. R. Timmel, H. L. Anderson, J. Am. Chem. Soc., 2009, 131, 13852; DOI: https://doi.org/10.1021/ja905796z.

    Article  CAS  PubMed  Google Scholar 

  27. Y. Xia, Y. Li, A. O. Burts, M. F. Ottaviani, D. A. Tirrell, J. A. Johnson, N. J. Turro, R. H. Grubbs, J. Am. Chem. Soc., 2011, 133, 19953; DOI: https://doi.org/10.1021/ja2085349.

    Article  CAS  PubMed  Google Scholar 

  28. A. S. Poryvaev, A. A. Yazikova, D. M. Polyukhov, O. A. Chinak, V. A. Richter, O. A. Krumkacheva, M. V. Fedin, J. Phys. Chem. C, 2021, 125, 15606; DOI: https://doi.org/10.1021/ACS.JPCC.1C03876.

    Article  CAS  Google Scholar 

  29. A. S. Poryvaev, D. M. Polyukhov, M. V. Fedin, ACS Appl. Mater. Interfaces, 2020, 12, 16655; DOI: https://doi.org/10.1021/acsami.0c03462.

    Article  CAS  PubMed  Google Scholar 

  30. D. M. Polyukhov, A. S. Poryvaev, S. A. Gromilov, M. V. Fedin, Nano Lett., 2019, 19, 6506; DOI: https://doi.org/10.1021/acs.nanolett.9b02730.

    Article  CAS  PubMed  Google Scholar 

  31. A. A. Efremov, A. S. Poryvaev, D. M. Polyukhov, M. V. Fedin, Micropor. Mesopor. Mater., 2022, 332, 111713; DOI: https://doi.org/10.1016/j.micromeso.2022.111713.

    Article  CAS  Google Scholar 

  32. P. Mialane, C. Mellot-Draznieks, P. Gairola, M. Duguet, Y. Benseghir, O. Oms, A. Dolbecq, Chem. Soc. Rev., 2021, 50, 6152; DOI: https://doi.org/10.1039/D0CS00323A.

    Article  CAS  PubMed  Google Scholar 

  33. A. Schejn, A. Aboulaich, L. Balan, V. Falk, J. Lalevée, G. Medjahdi, L. Aranda, K. Mozet, R. Schneider, Catal. Sci. Technol., 2015, 5, 1829; DOI: https://doi.org/10.1039/C4CY01505C.

    Article  CAS  Google Scholar 

  34. S. Stoll, A. Schweiger, J. Magn. Reson., 2006, 178, 42; DOI: https://doi.org/10.1016/j.jmr.2005.08.013.

    Article  CAS  PubMed  Google Scholar 

  35. E. V. Tretyakov, P. A. Fedyushin, Russ. Chem. Bull., 2021, 70, 2298; DOI: https://doi.org/10.1007/s11172-021-3346-5.

    Article  CAS  Google Scholar 

  36. I. V. Tikhonov, L. I. Borodin, V. D. Sen, E. M. Pliss, Russ. Chem. Bull., 2020, 69, 2097; DOI: https://doi.org/10.1007/s11172-020-3005-2.

    Article  CAS  Google Scholar 

  37. J. M. Hoover, B. L. Ryland, S. S. Stahl, J. Am. Chem. Soc., 2013, 135, 2357; DOI: https://doi.org/10.1021/ja3117203.

    Article  CAS  PubMed  Google Scholar 

  38. M. A. Iron, A. M. Szpilman, Chem. Eur. J., 2017, 23, 1368; DOI: https://doi.org/10.1002/chem.201604402.

    Article  CAS  PubMed  Google Scholar 

  39. S. A. Tromp, I. Matijošytė, R. A. Sheldon, I. W. C. E. Arends, G. Mul, M. T. Kreutzer, J. A. Moulijn, S. de Vries, ChemCatChem., 2010, 2, 827; DOI: https://doi.org/10.1002/cctc.201000068.

    Article  CAS  Google Scholar 

  40. G. Cheng, W. Li, L. Ha, X. Han, S. Hao, Y. Wan, Z. Wang, F. Dong, X. Zou, Y. Mao, S. Zheng, J. Am. Chem. Soc., 2018, 140, 23; DOI: https://doi.org/10.1021/jacs.8b03584.

    Google Scholar 

  41. R. Battino, T. R. Rettich, T. Tominaga, J. Phys. Chem. Ref. Data, 1983, 12, 163; DOI: https://doi.org/10.1063/1.555680.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. A. Gromilov or M. V. Fedin.

Additional information

Dedicated to Academician of the Russian Academy of Sciences V. I. Ovcharenko on the occasion of his 70th birthday.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1422–1428, July, 2022.

The authors are grateful to S. A. Prikhod’ko and N. Yu. Adonin, colleagues from the Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, who performed preliminary catalytic experiments.

No human or animal subjects were used in this research.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Efremov, A.A., Poryvaev, A.S., Polyukhov, D.M. et al. Oxidation of benzyl alcohol in the copper-doped ZIF-8 metal-organic framework with encapsulated nitroxyl radical. Russ Chem Bull 71, 1422–1428 (2022). https://doi.org/10.1007/s11172-022-3548-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3548-5

Key words

Navigation