Skip to main content
Log in

Liquid-phase heterogeneous hydrogenation of dicyclopentadiene

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Liquid-phase hydrogenation of dicyclopentadiene (endo-tricyclo[5.2.1.02,6]deca-3,8-diene) in the presence of Pd/γ-Al2O3 catalyst (PC-25) in heptane at 76 °C proceeds consecutively via the intermediate endo-tricyclo[5.2.1.02,6]dec-3-ene with the final formation of endo-tricyclo[5.2.1.02,6]decane. No destruction of the norbornane skeleton occurred under the experimental conditions. Reaction products were identified, main reaction routes were determined, material balance was studied. Kinetic data indicate a clear separation of the process steps and a quantitative hydrogenation of the norbornene bond in the substrate at the first step with practically 100% selectivity and conversion. The first step was found to have the zero kinetic order in the starting diene, the second step has the first order in monoene. The similarity of adsorption characteristics of norbornenes of different structures was kinetically confirmed. A consecutive scheme was proposed for the mechanism of the process based on the combination of experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. N. Antonova, I. A. Abramov, V. Sh. Feldblyum, I. G. Abramov, A. S. Danilova, Petroleum Chemistry, 2009, 49, 366; DOI: https://doi.org/10.1134/S0965544109050041.

    Article  Google Scholar 

  2. V. R. Flid, M. L. Gringolts, R. S. Shamsiev, E. Sh. Finkelshtein, Russ. Chem. Rev., 2018, 87, 1169; DOI: https://doi.org/10.1070/RCR4834.

    Article  CAS  Google Scholar 

  3. N. V. Vereshchagina, T. N. Antonova, G. Yu. Kopushkina, I. G. Abramov, Kinet. Catal., 2017, 58, 255; DOI: https://doi.org/10.1134/S0023158417030120.

    Article  CAS  Google Scholar 

  4. N. V. Vereshchagina, T. N. Antonova, I. G. Abramov, G. Y. Kopushkina, Petroleum Chemistry, 2014, 54, 207; DOI: https://doi.org/10.1134/S0965544114030116.

    Article  CAS  Google Scholar 

  5. J. M. Lenhardt, S. H. Kim, A. J. Nelson, P. Singhal, T. F. Baumann, J. H. SatcherJr., Polymer, 2013, 54, 542; DOI: https://doi.org/10.1016/j.polymer.2012.12.002.

    Article  CAS  Google Scholar 

  6. M. Claus, E. Claus, P. Claus, D. Hönicke, R. Födisch, M. Olson, Ullmann’s Encyclopedia of Industrial Chemistry. Cyclopentadiene and Cyclopentene, Wiley—VCH Verlag GmbH & Co. KGaA, Weinheim, 2016, 437 pp.; DOI: https://doi.org/10.1002/14356007.a08_227.pub2.

    Google Scholar 

  7. M. Navrátilová, K. Sporka, Appl. Catal. A: General, 2000, 203, 127; DOI: https://doi.org/10.1016/S0926-860X(00)00477-4.

    Article  Google Scholar 

  8. E. M. Engler, M. Farcasiu, A. Sevin, J. M. Cense, P. V. Schleyer, J. Am. Chem. Soc., 1973, 95, 5769; DOI: https://doi.org/10.1021/ja00798a059.

    Article  CAS  Google Scholar 

  9. C. A. Cohen, C. W. Muessig, US Pat. 3381046 A, Publ. 1968.

  10. X. Zhang, L. Pan, L. Wang, J.-J. Zou, Chem. Eng. Sci., 2018, 180, 95; DOI: https://doi.org/10.1016/j.ces.2017.11.044.

    Article  CAS  Google Scholar 

  11. M. Hao, B. Yang, H. Wang, G. Liu, S. Qi, J. Yang, Ch. Li, J. Lv, J. Phys. Chem. A, 2010, 114, 3811; DOI: https://doi.org/10.1021/jp9060363.

    Article  CAS  Google Scholar 

  12. M. V. Bermeshev, T. N. Antonova, D. R. Shangareev, A. S. Danilova, N. A. Pozharskaya, Petroleum Chemistry, 2018, 58, 869; DOI: https://doi.org/10.1134/S0028242118050039.

    Article  CAS  Google Scholar 

  13. Z. Fang, D. Shi, N. Lin, A. Li, Q. Wu, Q. Wang, Y. Zhao, C. Feng, Q. Jiao, H. Li, Appl. Catal. A: General, 2019, 574, 60; DOI: https://doi.org/10.1016/j.apcata.2019.01.026.

    Article  CAS  Google Scholar 

  14. R. I. Aminov, I. R. Ramazanov, R. I. Khusnutdinov, Russ. Chem. Bull., 2022, 71, 102; DOI: https://doi.org/10.1007/s11172-022-3382-9.

    Article  CAS  Google Scholar 

  15. G. Z. Liu, Z. T. Mi, L. Wang, X. W. Zhang, S. T. Zhang, Ind. Eng. Chem. Res., 2006, 45, 8807; DOI: https://doi.org/10.1021/ie060660y.

    Article  CAS  Google Scholar 

  16. G. Z. Liu, X. W. Zhang, L. Wang, S. T. Zhang, Z. T. Mi, Chem. Eng. Sci., 2008, 63, 4991; DOI: https://doi.org/10.1016/j.ces.2008.03.008.

    Article  CAS  Google Scholar 

  17. H. Han, J. J. Zou, X. W. Zhang, L. W, L. Wang, L. Wang Appl. Catal. A: General, 2009, 367, 84; DOI: https://doi.org/10.1016/j.apcata.2009.07.035.

    Article  CAS  Google Scholar 

  18. M. E. Jamróz, S. Gałka, J. C. Dobrowolski, J. Mol. Struct. (THEOCHEM), 2003, 634, 225; DOI: https://doi.org/10.1016/S0166-1280(03)00348-8.

    Article  Google Scholar 

  19. J.-J. Zou, X. Zhang, J. Kong, L. Wang, Fuel, 2008, 87, 3655; DOI: https://doi.org/10.1016/j.fuel.2008.07.006.

    Article  CAS  Google Scholar 

  20. Yu. V. Popov, V. M. Mokhov, D. N. Nebykov, S. E. Latyshova, K. V. Shcherbakova, A. O. Panov, Kinet. Catal., 2018, 59, 444; DOI: https://doi.org/10.1134/S0023158418040109.

    Article  CAS  Google Scholar 

  21. D. Skála, J. Hanika, Petroleum and Coal, 2003, 45, 105.

    Google Scholar 

  22. J. M. Campelo, A. Garcia, D. Luna, J. M. Marinas, J. Chem. Soc., Faraday Trans. 1, 1984, 80, 659; DOI: https://doi.org/10.1039/f19848000659.

    Article  CAS  Google Scholar 

  23. H. J. Flammersheim, J. Opfermann, Thermochim. Acta, 1999, 337, 149; DOI: https://doi.org/10.1016/S0040-6031(99)00163-X.

    Article  CAS  Google Scholar 

  24. X. W. Zhang, L. Pan, L. Wang, J. J. Zou, Chem. Eng. Sci., 2018, 180, 95; DOI: https://doi.org/10.1016/j.ces.2017.11.044.

    Article  CAS  Google Scholar 

  25. A. S. Berenblyum, E. A. Katsman, H. A. Al-Wadhaf, Petroleum Chemistry, 2015, 55, 118; DOI: https://doi.org/10.7868/S0028242115020045.

    Article  CAS  Google Scholar 

  26. I. S. Silina, E. A. Katsman, Yu. A. Treger, V. N. Rosanov, L. D. Iskhakova, R. P. Ermakov, V. V. Koltashev, L. G. Bruk, Fine Chem. Technol., 2017, 12, 50; DOI: https://doi.org/10.32362/2410-6593-2017-12-2-50-61.

    Article  CAS  Google Scholar 

  27. S. N. Kuttubaev, M. N. Rakhimov, M. L. Pavlov, R. A. Basimova, B. I. Kutepov, Neftegazovoye Delo [Oil and Gas Business], 2012, 4, 165 (in Russian).

    Google Scholar 

  28. V. V. Zamalyutin, E. A. Katsman, V. Ya. Danyushevsky, V. R. Flid, V. V. Podol’skii, A. V. Ryabov, Russ. J. Coord. Chem., 2021, 47, 695; DOI: https://doi.org/10.31857/S0132344X21100091.

    Article  CAS  Google Scholar 

  29. V. V. Zamalyutin, E. A. Katsman, A. V. Ryabov, A. Yu. Skryabina, M. A. Shpyneva, V. Ya. Danyushevskii, V. R. Flid, Kinet. Catal., 2022, 63, No. 2.

  30. V. V. Zamalyutin, A. V. Ryabov, A. I. Nichugovskii, A. Yu. Skryabina, O. Yu. Tkachenko, V. R. Flid, Russ. Chem. Bull., 2022, 71, 70; DOI: https://doi.org/10.1007/s11172-022-3378-5.

    Article  CAS  Google Scholar 

Download references

Funding

The work was performed using the equipment of the Center for Collective Use of the Russian Technological University (RTU MIREA).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Zamalyutin or V. R. Flid.

Additional information

No human or animal subjects were used in this research.

The authors declare no competing interests.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1204–1208, June, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zamalyutin, V.V., Ryabov, A.V., Solomakha, E.A. et al. Liquid-phase heterogeneous hydrogenation of dicyclopentadiene. Russ Chem Bull 71, 1204–1208 (2022). https://doi.org/10.1007/s11172-022-3521-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3521-3

Key words

Navigation