Skip to main content
Log in

Influence of the leaving group on the mechanism of hydrolysis of organophosphorus compounds by phosphotriesterase from bacterium Pseudomonas diminuta

  • Full Article
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Full-atom molecular models of the phosphotriesterase dimer from the Pseudomonas diminuta bacterium with organophosphorus compounds bearing good and poor leaving groups, dibutyl p-nitrophenyl phosphate and dibutyl phenyl phosphate, respectively, were constructed. Molecular dynamic simulations with combined quantum mechanics/molecular mechanics (QM/MM) potentials depicted differences in the properties of intermediates of the hydrolysis reaction with pentacoordinated phosphorus for these substrates. In the case of a substrate with the good leaving group, the bond between the phosphorus and oxygen atoms of the leaving group is weaker than that between the phosphorus and oxygen atoms of the nucleophilic hydroxide anion, which leads to an almost barrierless formation of the reaction products from the intermediate. For the substrate with the poor leaving group, an opposite pattern is observed, which favors the return of the system from the intermediate to reactants. These conclusions were made on the basis of an analysis of the distributions of bond lengths along the trajectories, as well as from an analysis of the maps of the Laplacian of electron density in the reaction region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Reemtsma, J. B. Quintana, R. Rodil, M. Garcia-López, I. Rodriguez, TrAC Trends Anal. Chem., 2008, 27, 727–737; DOI: https://doi.org/10.1016/j.trac.2008.07.002.

    Article  CAS  Google Scholar 

  2. J. Du, H. Li, S. Xu, Q. Zhou, M. Jin, J. Tang, Environ. Sci. Pollut. Res., 2019, 26, 22126–22136; DOI: https://doi.org/10.1007/s11356-019-05669-y.

    Article  CAS  Google Scholar 

  3. P.-C. Tsai, N. Fox, A. N. Bigley, S. P. Harvey, D. P. Barondeau, F. M. Raushel, Biochemistry, 2012, 51, 6463–6475; DOI: https://doi.org/10.1021/bi300811t.

    Article  CAS  Google Scholar 

  4. D. F. Xiang, A. N. Bigley, Z. Ren, H. Xue, K. G. Hull, D. Romo, F. M. Raushel, Biochemistry, 2015, 54, 7539–7549; DOI: https://doi.org/10.1021/acs.biochem.5b01144.

    Article  CAS  Google Scholar 

  5. J. L. Vanhooke, M. M. Benning, F. M. Raushel, H. M. Holden, Biochemistry, 1996, 35, 6020–6025; DOI: https://doi.org/10.1021/bi960325l.

    Article  CAS  Google Scholar 

  6. J. K. Grimsley, B. Calamini, J. R. Wild, A. D. Mesecar, Arch. Biochem. Biophys., 2005, 442, 169–179; DOI: https://doi.org/10.1016/j.abb.2005.08.012.

    Article  CAS  Google Scholar 

  7. S. D. Aubert, Y. Li, F. M. Raushel, Biochemistry, 2004, 43, 5707–5715; DOI: https://doi.org/10.1021/bi0497805.

    Article  CAS  Google Scholar 

  8. C. J. Jackson, J.-L. Foo, H.-K. Kim, P. D. Carr, J.-W. Liu, G. Salem, D. L. Ollis, J. Mol. Biol., 2008, 375, 1189–1196; DOI: https://doi.org/10.1016/j.jmb.2007.10.061.

    Article  CAS  Google Scholar 

  9. J. Kim, P. C. Tsai, S. L. Chen, F. Himo, S. C. Almo, F. M. Raushel, Biochemistry, 2008, 47, 9497–9504; DOI: https://doi.org/10.1021/bi800971v.

    Article  CAS  Google Scholar 

  10. J. M. Word, S. C. Lovell, J. S. Richardson, D. C. Richardson, J. Mol. Biol., 1999, 285, 1735–1747; DOI: https://doi.org/10.1006/jmbi.1998.2401.

    Article  CAS  Google Scholar 

  11. W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graph., 1996, 14, 33–38; DOI: https://doi.org/10.1016/0263-7855(96)00018-5.

    Article  CAS  Google Scholar 

  12. J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kalé, K. Schulten, J. Comput. Chem., 2005, 26, 1781–1802; DOI: https://doi.org/10.1002/jcc.20289.

    Article  CAS  Google Scholar 

  13. R. B. Best, X. Zhu, J. Shim, P. E. M. Lopes, J. Mittal, M. Feig, A. D. MacKerell, J. Chem. Theory Comput., 2012, 8, 3257–3273; DOI: https://doi.org/10.1021/ct300400x.

    Article  CAS  Google Scholar 

  14. K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim, E. Darian, O. Guvench, P. Lopes, I. Vorobyov, A. D. Mackerell, J. Comput. Chem., 2009, 31, 671–690; DOI: https://doi.org/10.1002/jcc.21367.

    Google Scholar 

  15. W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, M. L. Klein, J. Chem. Phys., 1983, 79, 926–935; DOI: https://doi.org/10.1063/1.445869.

    Article  CAS  Google Scholar 

  16. S. Seritan, C. Bannwarth, B. S. Fales, E. G. Hohenstein, C. M. Isborn, S. I. L. Kokkila-Schumacher, X. Li, F. Liu, N. Luehr, J. W. Snyder, C. Song, A. V. Titov, I. S. Ufimtsev, L. Wang, T. J. Martínez, WIREs Comput. Mol. Sci., 2021, 11, e1494; DOI: https://doi.org/10.1002/wcms.1494.

    CAS  Google Scholar 

  17. M. C. R. Melo, R. C. Bernardi, T. Rudack, M. Scheurer, C. Riplinger, J. C. Phillips, J. D. C. Maia, G. B. Rocha, J. V. Ribeiro, J. E. Stone, F. Neese, K. Schulten, Z. Luthey-Schulten, Nat. Methods, 2018, 15, 351–354; DOI: https://doi.org/10.1038/nmeth.4638.

    Article  CAS  Google Scholar 

  18. C. Adamo, V. Barone, J. Chem. Phys., 1999, 110, 6158–6170; DOI: https://doi.org/10.1063/1.478522.

    Article  CAS  Google Scholar 

  19. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys., 2010, 132, 154104; DOI: https://doi.org/10.1063/1.3382344.

    Article  Google Scholar 

  20. T. Lu, F. Chen, J. Comput. Chem., 2012, 33, 580–592; DOI: https://doi.org/10.1002/jcc.22885.

    Article  Google Scholar 

  21. R. F. Bader, P. J. MacDougall, C. D. H. Lau, J. Am. Chem. Soc., 1984, 106, 1594–1605; DOI: https://doi.org/10.1021/ja00318a009.

    Article  CAS  Google Scholar 

  22. V. G. Tsirelson, P. F. Zhou, T.-H. Tang, R. F. W. Bader, Acta Crystallogr., 1995, A51, 143–153; DOI: https://doi.org/10.1107/S0108767394009463.

    Article  CAS  Google Scholar 

  23. A. V. Nemukhin, B. L. Grigorenko, S. V. Lushchekina, S. D. Varfolomeev, Russ. Chem. Bull., 2021, 70, 2084–2089; DOI: https://doi.org/10.1007/s11172-021-3319-8.

    Article  CAS  Google Scholar 

  24. M. G. Khrenova, B. L. Grigorenko, A. V. Nemukhin, ACS Catal., 2021, 11, 8985–8998; DOI: https://doi.org/10.1021/acscatal.

    Article  CAS  Google Scholar 

  25. M. G. Khrenova, A. M. Kulakova, A. V. Nemukhin, J. Chem. Inf. Model., 2021, 61, 1215–1225; DOI: https://doi.org/10.1021/acs.jcim.0c01308.

    Article  CAS  Google Scholar 

  26. M. G. Khrenova, B. L. Grigorenko, A. V. Nemukhin, ACS Catal., 2021, 11, 8985–8998; DOI: https://doi.org/10.1021/acscatal.1c00582.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Khrenova.

Additional information

Based on materials of the XXXIII Symposium “Modern Chemical Physics” (September 24–October 4, 2021, Tuapse, Russia).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 921–926, May, 2022.

The research is carried out using the equipment of the shared research facilities of HPC computing resources at Lomonosov Moscow State University.

This work was financially supported by the Russian Foundation for Basic Research (Project No. 21-33-70001).

No human or animal subjects were used in this research.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulakova, A.M., Mulashkina, T.I., Nemukhin, A.V. et al. Influence of the leaving group on the mechanism of hydrolysis of organophosphorus compounds by phosphotriesterase from bacterium Pseudomonas diminuta. Russ Chem Bull 71, 921–926 (2022). https://doi.org/10.1007/s11172-022-3491-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3491-5

Key words

Navigation