Skip to main content
Log in

Tandem silylation—desilylation reaction in the synthesis of N-methyl carboxamides

  • Full Article
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The N-methylation of primary carboxamides is based on two consecutive reactions. The silylation of the corresponding carboxamides with chloro(chloromethyl)dimethylsilane in the presence of an organic base is accompanied by intramolecular rearrangement with the formation of the (O—Si) chelate compound of pentacoordinated silicon containing a C(O)—N—C—Si fragment. The subsequent desilylation with metal fluorides in ethylene glycol allows obtaining the corresponding N-methyl carboxamides in 58–92% yields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Kumari, A. V. Carmona, A. K. Tiwari, P. C. Trippier, J. Med. Chem., 2020, 63, 12290; DOI: https://doi.org/10.1021/acs.jmedchem.0c00530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. D. L. Kays, Chem. Soc. Rev., 2016, 45, 1004; DOI: https://doi.org/10.1039/c5cs00513b.

    Article  CAS  PubMed  Google Scholar 

  3. R. Das, G. Srikanth Kumar, M. Kapur, Eur. J. Org. Chem., 2017, 5439; DOI: https://doi.org/10.1002/ejoc.201700546.

  4. A. Harrington, Y. Tal-Gan, Future Med. Chem., 2019, 11, 2759; DOI: https://doi.org/10.4155/fmc-2019-0238.

    Article  CAS  PubMed  Google Scholar 

  5. R. M. Lanigan, T. D. Sheppard, Eur. J. Org. Chem., 2013, 7453; DOI: https://doi.org/10.1002/ejoc.201300573.

  6. A. Ojeda-Porras, D. Gamba-Sanchez, J. Org. Chem., 2016, 81, 11548; DOI: https://doi.org/10.1021/acs.joc.6b02358.

    Article  CAS  PubMed  Google Scholar 

  7. J. Chatterjee, C. Gilon, A. Hoffman, H. Kessler, Acc. Chem. Res., 2008, 41, 1331; DOI: https://doi.org/10.1021/ar8000603.

    Article  CAS  PubMed  Google Scholar 

  8. J. Chatterjee, D. Mierke, H. Kessler, J. Am. Chem. Soc., 2006, 128, 15164; https://doi.org/10.1021/ja063123d.

    Article  CAS  PubMed  Google Scholar 

  9. J. Chatterjee, F. Rechenmacher, H. Kessler, Angew. Chem., Int. Ed., 2013, 52, 254; DOI: https://doi.org/10.1002/anie.201205674.

    Article  CAS  Google Scholar 

  10. R. Moslin, Y. Zhang, S. T. Wrobleski, S. Lin, M. Mertzman, S. Spergel, J. S. Tokarski, J. Strnad, K. Gillooly, K. W. McIntyre, A. Zupa-Fernandez, L. Cheng, H. Sun, C. Chaudhry, C. Huang, C. D’Arienzo, E. Heimrich, X. Yang, J. K. Muckelbauer, C.Y. Chang, J. Tredup, D. Mulligan, D. Xie, N. Aranibar, M. Chiney, J. R. Burke, L. Lombardo, P. H. Carter, D. S. Weinstein, J. Med. Chem., 2019, 62, 8953; DOI: https://doi.org/10.1021/acs.jmedchem.9b00443.

    Article  CAS  PubMed  Google Scholar 

  11. Y. Otake, Y. Shibata, Y. Hayashi, S. Kawauchi, H. Nakamura, S. Fuse, Angew. Chem., Int. Ed., 2020, 59, 12925; DOI: https://doi.org/10.1002/anie.202002106.

    Article  CAS  Google Scholar 

  12. E. J. Barreiro, A. E. Kummerle, C. A. M. Fraga, Chem. Rev., 2011, 111, 5215; DOI: 524610.1021/cr200060g.

    Article  CAS  PubMed  Google Scholar 

  13. C. A. G. N. Montalbetti, V. Falque, Tetrahedron, 2005, 61, 10827; DOI: https://doi.org/10.1016/j.tet.2005.08.031.

    Article  CAS  Google Scholar 

  14. E. Massolo, M. Pirola, M. Benaglia, Eur. J. Org. Chem., 2020, 4641; DOI: https://doi.org/10.1002/ejoc.202000080.

  15. G. Li, M. Szostak, Synthesis, 2020, 52, 2579; DOI: https://doi.org/10.1055/s-0040-1707101.

    Article  CAS  Google Scholar 

  16. E. Valeur, M. Bradley, Chem. Soc. Rev., 2009, 38, 606; DOI: https://doi.org/10.1039/b701677h.

    Article  CAS  PubMed  Google Scholar 

  17. M. Kolympadi Markovića, D. Marković, S. Laclef, Synthesis, 2020, 52, 3231; DOI: https://doi.org/10.1055/s-0040-1707133.

    Article  CAS  Google Scholar 

  18. H. Lundberg, F. Tinnis, N. Selander, H. Adolfsson, Chem. Soc. Rev., 2014, 43, 2714; DOI: https://doi.org/10.1039/c3cs60345h.

    Article  CAS  PubMed  Google Scholar 

  19. C. Chen, F. Verpoort, Q. Wu, RSC Adv., 2016, 6, 55599; DOI: https://doi.org/10.1039/c6ra10643a.

    Article  CAS  Google Scholar 

  20. R. K. Olsen, J. Org. Chem., 1970, 35, 1912; DOI: https://doi.org/10.1021/jo00831a042.

    Article  CAS  PubMed  Google Scholar 

  21. N. O. Brace, J. Org. Chem., 1993, 58, 1804; DOI: https://doi.org/10.1021/jo00059a035.

    Article  CAS  Google Scholar 

  22. S. T. Cheung, N. Leo Benoiton, Can. J. Chem., 1977, 55, 906; DOI: https://doi.org/10.1139/v77-125.

    Article  CAS  Google Scholar 

  23. D. Har, B. Hu, H.-Y. Kim, O. Repic, T. J. Blacklockm, Org. Lett., 2003, 5, 125; DOI: https://doi.org/10.1021/ol0268440.

    Article  PubMed  CAS  Google Scholar 

  24. D. Bogdal, Molecules, 1999, 4, 333; https://home.cyf-kr.edu.pl/~pcbogdal/amide/molecules%201999.pdf.

    Article  Google Scholar 

  25. B. Paul, D. Panja, S. Kundu, Org. Lett., 2019, 21, 5843; DOI: https://doi.org/10.1021/acs.orglett.9b01925.

    Article  CAS  PubMed  Google Scholar 

  26. S. Asai, K. Ban, Y. Monguchi, H. Sajiki, Y. Sawama, Synlett, 2018, 29, 322; DOI: https://doi.org/10.1055/s-0036-1591494.

    Article  CAS  Google Scholar 

  27. B. Paul, M. Maji, S. Kundu, ACS Catal., 2019, 9, 10469; DOI: https://doi.org/10.1021/acscatal.9b03916.

    Article  CAS  Google Scholar 

  28. R. Sakamoto, S. Sakurai, K. Maruoka, Chem. Eur. J., 2017, 23, 9030; DOI: https://doi.org/10.1002/chem.201702217.

    Article  CAS  PubMed  Google Scholar 

  29. R. Sakamoto, S. Sakurai, K. Maruoka, Chem. Commun., 2017, 53, 6484; DOI: https://doi.org/10.1039/c7cc02910a.

    Article  CAS  Google Scholar 

  30. H.-G. Cheng, M. Pu, G. Kundu, F. Schoenebeck, Org. Lett., 2020, 22, 331; DOI: https://doi.org/10.1021/acs.orglett.9b04400.

    Article  CAS  PubMed  Google Scholar 

  31. A. R. Bassindale, D. J. Parker, P. Patel, P. G. Taylor, Tetrahedron Lett., 2000, 41, 4933; DOI: https://doi.org/10.1016/S0040-4039(00)00731-0.

    Article  CAS  Google Scholar 

  32. C. I. Stathakis, P. L. Gkizis, E. S. Alexandraki, S. Trakossas, M. Terzidis, E. Neokosmidis, C. K. Zacharis, C. Vasiliadou, E. Vastardi, T. Andreou, A. Zitrou, A.-A. Varvogli, T. V. Koftis, Org. Process Res. Dev., 2017, 21, 1413; DOI: https://doi.org/10.1021/acs.oprd.7b00171.

    Article  CAS  Google Scholar 

  33. R. Hillyard, C. M. Ryan, C. H. Yoder, J. Organomet. Chem., 1978, 153, 369; DOI: https://doi.org/10.1016/S0022-328X(00)92060-6.

    Article  CAS  Google Scholar 

  34. A. G. Shipov, E. P. Kramarova, Yu. I. Baukov, Russ. J. Gen. Chem., 1994, 64, 1099.

    Google Scholar 

  35. I. D. Kalikhman, A. I. Albanov, O. B. Bannikova, L. I. Belousova, M. G. Voronkov, V. A. Pestunovich, A. G. Shipov, E. P. Kramarova, Y. I. Baukov, J. Organomet. Chem., 1989, 361, 147; DOI: https://doi.org/10.1016/0022-328X(89)85379-3.

    Article  CAS  Google Scholar 

  36. M. V. Kashutina, S. L. Ioffe, V. A. Tartakovskii, Russ. Chem. Rev., 1975, 44, 733; DOI: https://doi.org/10.1070/RC1975v044n09ABEH002373.

    Article  Google Scholar 

  37. G. van Look, Silylating agents: derivatization reagents, protecting-group reagents, organosilicon compounds, analytical applications, synthetic applications, 153 p.; https://qaci.sial.com/content/dam/sigma-aldrich/docs/Aldrich/General_Information/silylationoverview.pdf.

  38. C. A. Bruynes, T. K. Jurriens, J. Org. Chem., 1982, 47, 3966; DOI: https://doi.org/10.1021/jo00141a031.

    Article  CAS  Google Scholar 

  39. R. Hillyard, C. M. Ryan, C. H. Yoder, J. Organomet. Chem., 1978, 153, 369; DOI: https://doi.org/10.1016/S0022-328X(00)92060-6.

    Article  CAS  Google Scholar 

  40. A. A. Korlyukov, S. A. Pogozhikh, Yu. E. Ovchinnikov, K. A. Lyssenko, M. Yu. Antipin, A. G. Shipov, O. A. Zamyshlyaeva, E. P. Kramarova, V. V. Negrebetsky, I. P. Yakovlev, Yu. I. Baukov, J. Organomet. Chem., 2006, 691, 3962; DOI: https://doi.org/10.1016/j.jorganchem.2006.05.047.

    Article  CAS  Google Scholar 

  41. W. L. F. Armarego, C. L. L. Chai, Purification of Laboratory Chemicals, 6th ed., Elsevier, 2009, 760 p.

  42. S. Marchalin, J. Kuthan, Coll. Czech. Chem. Comm., 1983, 48, 3112; DOI: https://doi.org/10.1135/cccc19833112.

    Article  CAS  Google Scholar 

  43. Y. Nai, J. Xu, Helv. Chim. Acta, 2013, 96, 1355; 2013, DOI: https://doi.org/10.1002/hlca.201200547.

    Article  CAS  Google Scholar 

  44. X. Wen, W. Chen, J. Chen, Appl. Organometal. Chem., 2019, 33, e5174, DOI: https://doi.org/10.1002/aoc.5174.

    Article  CAS  Google Scholar 

  45. Spectral Database for Organic Compounds, SDBS;https://sdbs.db.aist.go.jp/sdbs/cgi-bin/cre_index.cgi.

  46. A. R. Chhatwal, H. V. Lomax, A. J. Blacker, J. M. J. Williams, P. Marce, Chem. Sci., 2020, 11, 5808; DOI: https://doi.org/10.1039/d0sc01317j.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. S. Hinterberger, O. Hofer, H. Greger, Tetrahedron, 1998, 54, 487; DOI: https://doi.org/10.1016/S0040-4020(97)10297-6.

    Article  CAS  Google Scholar 

  48. S. Tadashi, I. Takeshi, Y. Koichi, Bull. Chem. Soc. Jpn, 1972, 45, 1176; DOI: https://doi.org/10.1246/bcsj.45.1176.

    Article  Google Scholar 

  49. M. Zhang, J. Chem. Res., 2013, 37, 606; DOI: https://doi.org/10.3184/174751913X13801883437178.

    Article  CAS  Google Scholar 

  50. P. Wessig, S. Krebs, Eur. J. Org. Chem., 2021; DOI: https://doi.org/10.1002/ejoc.202100955.

  51. J. Jiang, W.-M. Zhang, J.-J. Dai, J. Xu, H.-J. Xu, J. Org. Chem., 2017, 82, 3622; DOI: https://doi.org/10.1021/acs.joc.7b00140.

    Article  CAS  PubMed  Google Scholar 

  52. L. Kuang, J. Zhou, S. Chen, Synthesis, 2007, 3129; DOI: https://doi.org/10.1055/s-2007-990795.

  53. H. J. Gim, M. E. Jung, Synthesis, 2019, 51, 2548; DOI: https://doi.org/10.1055/s-0037-161153.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. F. Lazareva.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 735–739, April, 2022.

The results of this work were obtained using analytical equipment of the Baikal Center for Collective use of the Siberian Branch of the Russian Academy of Sciences.

No human or animal subjects were used in this research.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazareva, N.F., Lazarev, I.M. Tandem silylation—desilylation reaction in the synthesis of N-methyl carboxamides. Russ Chem Bull 71, 735–739 (2022). https://doi.org/10.1007/s11172-022-3473-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3473-7

Key words

Navigation