Skip to main content
Log in

Insights into the reaction paths of copper(i) acetylides with dichloroglyoxime leading to 3,3′-biisoxazoles

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Base-free reaction of dichloroglyoxime with copper(i) acetylides gave 3,3′-biisoxazoles via a nucleophilic substitution of the chlorine atom of dichloroglyoxime with the acetylene moiety followed by cyclization of the intermediate formed. The effects of the solvent on the product yields were studied. In the case of substituted copper acetylides, 5,5′-disubstituted 3,3′-biisoxazoles were obtained in the yields from moderate to high and high regioselectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Gilman, J. M. Straley, Rec. Trav. Chim. Pays-Bas, 1936, 55, 821–834; DOI: https://doi.org/10.1002/recl.19360551003.

    Article  CAS  Google Scholar 

  2. R. Boettger, Justus Liebigs Ann. Chem., 1859, 109, 351–362; DOI: https://doi.org/10.1002/jlac.18591090318.

    Article  Google Scholar 

  3. R. Nast, W. Pfab, Chem. Ber., 1956, 89, 415–421; DOI: https://doi.org/10.1002/cber.19560890235.

    Article  CAS  Google Scholar 

  4. C. Glaser, Justus Liebigs Ann. Chem., 1870, 154, 137–171; DOI: https://doi.org/10.1002/jlac.18701540202.

    Article  Google Scholar 

  5. J. G. Smith, Synth. React. Inorg. Met.-Org. Chem., 1981, 11, 609–610; DOI: https://doi.org/10.1080/00945718108056004.

    Article  Google Scholar 

  6. H. Ito, K. Arimoto, H.-o. Sensul, A. Hosomi, Tetrahedron Lett., 1997, 38, 3977–3980; DOI: https://doi.org/10.1016/S0040-4039(97)00794-6.

    Article  CAS  Google Scholar 

  7. J. F. Normant, Synthesis, 1972, 1972, 63–80; DOI: https://doi.org/10.1055/s-1972-21833.

    Article  Google Scholar 

  8. S. S. Y. Chui, M. F. Y. Ng, C.-M. Che, Chem. Eur. J., 2005, 11, 1739–1749; DOI: https://doi.org/10.1002/chem.200400881.

    Article  CAS  Google Scholar 

  9. R. Nast, Coord. Chem. Rev., 1982, 47, 89–124; DOI: https://doi.org/10.1016/0010-8545(82)85011-X.

    Article  CAS  Google Scholar 

  10. G. Evano, K. Jouvin, C. Theunissen, C. Guissart, A. Laouiti, C. Tresse, J. Heimburger, Y. Bouhoute, R. Veillard, M. Lecomte, A. Nitelet, S. Schweizer, N. Blanchard, C. Alayrac, A. C. Gaumont, Chem. Commun., 2014, 50, 10008–10018; DOI: https://doi.org/10.1039/C4CC03198A.

    Article  CAS  Google Scholar 

  11. S. Díez-González, in Advances in. Organometallic Chemistry, Ed. P. J. Pérez, Acad. Press, 2016, Vol. 66, pp. 93–141.

  12. R. D. Stephens, C. E. Castro, J. Org. Chem., 1963, 28, 3313–3315; DOI: https://doi.org/10.1021/jo01047a008.

    Article  CAS  Google Scholar 

  13. C. E. Castro, E. J. Gaughan, D. C. Owsley, J. Org. Chem., 1966, 31, 4071–4078; DOI: https://doi.org/10.1021/jo01350a045.

    Article  CAS  Google Scholar 

  14. T. Besset, T. Poisson, X. Pannecoucke, Eur. J. Org. Chem., 2014, 32, 7220–7225; DOI: https://doi.org/10.1002/ejoc.201402937.

    Article  Google Scholar 

  15. K. Jouvin, R. Veillard, C. Theunissen, C. Alayrac, A.-C. Gaumont, G. Evano, Org. Lett., 2013, 15, 4592–4595; DOI: https://doi.org/10.1021/ol402197d.

    Article  CAS  Google Scholar 

  16. F. Verna, C. Guissart, J. Pous, G. Evano, Monatsh. Chem., 2013, 144, 523–529; DOI: https://doi.org/10.1007/s00706-012-0896-0.

    Article  CAS  Google Scholar 

  17. B. Wang, J. Zhang, X. Wang, N. Liu, W. Chen, Y. Hu, J. Org. Chem., 2013, 78, 10519–10523; DOI: https://doi.org/10.1021/jo401629x.

    Article  CAS  Google Scholar 

  18. B. Wang, M. N. Ahmed, J. Zhang, W. Chen, X. Wang, Y. Hu, Tetrahedron Lett., 2013, 54, 6097–6100; DOI: https://doi.org/10.1016/j.tetlet.2013.08.121.

    Article  CAS  Google Scholar 

  19. T. P. Vasilyeva, D. V. Vorobyeva, Russ. Chem. Bull., 2020, 69, 300; DOI: https://doi.org/10.1007/s11172-020-2760-4.

    Article  CAS  Google Scholar 

  20. P. S. Gribanov, M. A. Topchiy, I. V. Karsakova, G. A. Chesnokov, A. Y. Smirnov, L. I. Minaeva, A. F. Asachenko, M. S. Nechaev, Eur. J. Org. Chem., 2017, 2017, 5225–5230; DOI: https://doi.org/10.1002/ejoc.201700925.

    Article  CAS  Google Scholar 

  21. J. Zhang, W. Chen, B. Wang, Z. Zhao, X. Wang, Y. Hu, RSC Adv., 2015, 5, 14561–14566; DOI: https://doi.org/10.1039/C4RA15980B.

    Article  CAS  Google Scholar 

  22. B. Wang, N. Liu, W. Chen, D. Huang, X. Wang, Y. Hu, Adv. Synth. Catal., 2015, 357, 401–407; DOI: https://doi.org/10.1002/adsc.201400471.

    Article  CAS  Google Scholar 

  23. P. R. Reddy, L. Cui, J.-S. Ryu, RSC Adv., 2018, 8, 2759–2767; DOI: https://doi.org/10.1039/C7RA12889D.

    Article  CAS  Google Scholar 

  24. P. Liu, C. J. Brassard, J. P. Lee, L. Zhu, Chem. Asian. J., 2020, 15, 380–390; DOI: https://doi.org/10.1002/asia.201901581.

    Article  CAS  Google Scholar 

  25. D. L. Obydennov, E. V. Chernyshova, V. Y. Sosnovskikh, Chem. Heterocycl. Compd., 2020, 56, 1241–1253; DOI: https://doi.org/10.1007/s10593-020-02807-0.

    Article  Google Scholar 

  26. S. Khodabandlou, M. Saraei, Chem. Heterocycl. Compd., 2021, 57, 823–827; DOI: https://doi.org/10.1007/s10593-021-02986-4.

    Article  CAS  Google Scholar 

  27. A. A. Larin, L. L. Fershtat, N. N. Makhova, Chem. Heterocycl. Compd., 2020, 56, 607–610; DOI: https://doi.org/10.1007/s10593-020-02706-4.

    Article  CAS  Google Scholar 

  28. K. A. Chudov, K. S. Levchenko, N. O. Poroshin, A. V. Shchegol’kov, P. S. Shmelin, E. P. Grebennikov, Russ. Chem. Bull., 2019, 68, 1565; DOI: https://doi.org/10.1007/s11172-019-2593-1.

    Article  CAS  Google Scholar 

  29. O. B. Bondarenko, N. V. Zyk, Chem. Heterocycl. Compd., 2020, 56, 694–707; DOI: https://doi.org/10.1007/s10593-020-02718-0.

    Article  CAS  Google Scholar 

  30. O. B. Bondarenko, N. V. Zyk, Chem. Heterocycl. Compd., 2020, 56, 1523–1534; DOI: https://doi.org/10.1007/s10593-020-02845-8.

    Article  CAS  Google Scholar 

  31. W. Chen, J. Zhang, B. Wang, Z. Zhao, X. Wang, Y. Hu, J. Org. Chem., 2015, 80, 2413–2417; DOI: https://doi.org/10.1021/jo502634h.

    Article  CAS  Google Scholar 

  32. J. F. Normant, M. Bourgain, Tetrahedron Lett., 1970, 11, 2659–2662; DOI: https://doi.org/10.1016/S0040-4039(01)98306-6.

    Article  Google Scholar 

  33. C. E. Castro, R. Havlin, V. K. Honwad, A. M. Malte, S. W. Moje, J. Am. Chem. Soc., 1969, 91, 6464–6470; DOI: https://doi.org/10.1021/ja01051a049.

    Article  CAS  Google Scholar 

  34. E. J. Kantorowski, M. J. Kurth, J. Org. Chem., 1997, 62, 6797–6803; DOI: https://doi.org/10.1021/jo970712g.

    Article  CAS  Google Scholar 

  35. P. M. Yogesh Walunj, Pramod Kulkarni, Mini-Rev. Org. Chem., 2021, 18, 55–77; DOI: https://doi.org/10.2174/1570193X17999200511131621.

    Article  Google Scholar 

  36. G. A. Chesnokov, A. A. Ageshina, M. A. Topchiy, M. S. Nechaev, A. F. Asachenko, Eur. J. Org. Chem., 2019, 4844–4854; DOI: https://doi.org/10.1002/ejoc.201900772.

  37. A. A. Ageshina, G. A. Chesnokov, M. A. Topchiy, I. V. Alabugin, M. S. Nechaev, A. F. Asachenko, Org. Biomol. Chem., 2019, 17, 4523–4534; DOI: https://doi.org/10.1039/C9OB00615J.

    Article  CAS  Google Scholar 

  38. G. A. Chesnokov, A. A. Ageshina, A. V. Maryanova, S. A. Rzhevskiy, P. S. Gribanov, M. A. Topchiy, M. S. Nechaev, A. F. Asachenko, Russ. Chem. Bull., 2020, 69, 2370; DOI: https://doi.org/10.1007/s11172-020-3028-8.

    Article  CAS  Google Scholar 

  39. C. Grundmann, Synthesis, 1970, 344–359; DOI: https://doi.org/10.1055/s-1970-21611.

  40. Y. D. Golenko, M. A. Topchiy, A. F. Asachenko, M. S. Nechaev, D. V. Pleshakov, Chin. J. Chem., 2017, 35, 98–102; DOI: https://doi.org/10.1002/cjoc.201600599.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Asachenko.

Ethics declarations

The authors declare no competing interests.

Additional information

This work was financially supported by the Council on Grants at the President of the Russian Federation (Project MD-5404.2021.1.3). Copper acetylides were synthesized in the framework of the State task of A. V. Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences. The work was carried out using the equipment of the Center for the Collective Use of the Scientific Equipment of the IPS RAS “Analytical Center for Problems of Deep Oil Refining and Petrochemistry”.

No human or animal subjects were used in this research.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 484–488, March, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Topchiy, M.A., Sterligov, G.K., Ageshina, A.A. et al. Insights into the reaction paths of copper(i) acetylides with dichloroglyoxime leading to 3,3′-biisoxazoles. Russ Chem Bull 71, 484–488 (2022). https://doi.org/10.1007/s11172-022-3437-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3437-y

Key words

Navigation