Skip to main content
Log in

The structure and properties of functionalized cyclodextrins and complex compounds based on them

  • Reviews
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

This review presents data on advanced research on functionalized cyclodextrins. In particular, metal complexes of cyclodextrin derivatives and their possible applications in chemistry, biology, and medicine are discussed. The advantages and high potential of compounds based on functionalized cyclodextrins are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Dodziuk, Cyclodextrins and their Complexes, Willey-VCH, Warsaw, 2006, 486 p.

    Book  Google Scholar 

  2. T. Endo, Trends Glycosci. Glycotechnol., 2011, 23, 79; DOI: https://doi.org/10.4052/tigg.23.79.

    Article  CAS  Google Scholar 

  3. H. Niu, W. Chen, W. Chen, Y. Yun, Q. Zhong, X. Fu, H. Chen, G. Liu, J. Agric. Food Chem., 2019, 67, 12875; DOI: https://doi.org/10.1021/acs.jafc.9b05467.

    Article  CAS  PubMed  Google Scholar 

  4. S. Braga, Biomolecules, 2019, 9, 801; DOI: https://doi.org/10.3390/biom9120801.

    Article  CAS  PubMed Central  Google Scholar 

  5. M. V. Ambrogio, T. A. Pecorelli, K. Patel, N. M. Khashab, A. Trabolsi, H. A. Khatib, Y. Y. Botros, J. I. Zink, J. F. Stoddart, Org. Lett., 2010, 12, 3304; DOI: https://doi.org/10.1021/ol1101286a.

    Article  CAS  PubMed  Google Scholar 

  6. M. W. Ambrogio, C. R. Thomas, Y.-Li Zhao, J. Zink, J. F. Stoddart, Acc. Chem. Res., 2011, 44, 903; DOI: https://doi.org/10.1021/ar200018x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. K. S. Sharapov, K. V. Zolaeva, V. A. Volynkin, V. T. Panyuskhin, Russ. Chem. Bull., 2019, 68, 507; DOI: https://doi.org/10.1007/s11172-019-2446-y.

    Article  CAS  Google Scholar 

  8. R. A. Sharipov, K. S. Sharapov, U. S. Kemelbekov, V. A. Volynkin, V. K. Yu, V. T. Panyushkin, K. D. Praliev, J. Inclusion Phenom. Macrocyclic Chem., 2017, 87, 141; DOI: https://doi.org/10.1007/s10847-016-0685-1.

    Article  CAS  Google Scholar 

  9. T. R. Usacheva, D. N. Kabirov, D. A. Alister, M. N. Zavalishin, G. A. Gamov, L. Pham Thi, M. Vu Xuan, D. Nguyen Tuan, Russ. Chem. Bull., 2020, 69, 1692; DOI: https://doi.org/10.1007/s11172-020-2949-6.

    Article  CAS  Google Scholar 

  10. S. Fourmentin, G. Crini, E. Lichtfouse, Cyclodextrin Fundamentals, Reactivity and Analysis, Springer, Berlin, 2018, 255 pp.; DOI: https://doi.org/10.1007/978-3-319-76159-6.

    Book  Google Scholar 

  11. D. E. Levy, P. Fuegedi, The Organic Chemistry of Sugars, CRC Press, Boca Raton—London—New York, 2006, 904 pp.

    Google Scholar 

  12. C. J. Bruns, Symmetry, 2019, 11, 1249; DOI: https://doi.org/10.3390/sym11101249.

    Article  CAS  Google Scholar 

  13. E. M. M. Del Valle, Process Biochem., 2004, 39, 1033; DOI: https://doi.org/10.1016/s0032-9592(03)00258-9.

    Article  CAS  Google Scholar 

  14. S. Immel, J. Brickmann, F. W. Lichtenhaler, Liebigs Ann., 1995, 6, 929; DOI: https://doi.org/10.1002/jlac.1995199506134.

    Article  Google Scholar 

  15. T. Nakagawa, K. Ueno, M. Kashiwa, J. Watanabe, Tetrahedron Lett., 1994, 35, 1921; DOI: https://doi.org/10.1016/S0040-4039(00)73196-0.

    Article  CAS  Google Scholar 

  16. D. Ikuta, Y. Hirata, S. Wakamori, H. Shimada, Y. Tomabechi, Y. Kawasaki, K. Ikeuchi, T. Hagimori, S. Matsumoto, H. Yamada, Science, 2019, 364, 674; DOI: https://doi.org/10.1126/science.aaw3053.

    Article  CAS  PubMed  Google Scholar 

  17. M. A. Kapustin, A. S. Chubarova, T. N. Halavatch, V. G. Cigankov, A. M. Bondaruk, V. P. Kurchenko, Tr. Belorus. gos. un-ta [Proc. Belarus. State Univ., Ser. Physiological, Biochemical, and Molecular Biology Sciences], 2016, 11, 73 (in Russian).

    Google Scholar 

  18. M. J. Jozwiakowski, K. A. Connors, Carbohydr. Res., 1985, 143, 51; DOI: https://doi.org/10.1016/S0008-6215(00)90694-3.

    Article  CAS  Google Scholar 

  19. A. W. Coleman, I. Nicolis, N. Keller, J. P. Dalbiez, J. Inclusion Phenom. Mol. Recognit. Chem., 1992, 13, 139; DOI: https://doi.org/10.1007/BF01053637.

    Article  CAS  Google Scholar 

  20. J. C. de Miranda, T. E. Azevedo Martins, F. Veiga, H. Gomes Ferraz, Braz. J. Pharm. Sci., 2011, 47, 665; DOI: https://doi.org/10.1590/S1984-82502011000400003.

    Article  Google Scholar 

  21. A. V. Astakhova, N. B. Demina, Pharm. Chem. J., 2004, 38, 105; DOI: https://doi.org/10.1023/B:PHAC.0000032490.04705.ba.

    Article  CAS  Google Scholar 

  22. M. Sollogoub, Synlett, 2013, 24, 2629; DOI: https://doi.org/10.1055/s-0033-1339877.

    Article  CAS  Google Scholar 

  23. N. G. Rambidi, A. V. Berezkin, Fizicheskie i khimicheskie osnovy nanotekhnologiy [Nanotechnologies: Physical and Chemical Foundations], Fizmatlit, Moscow, 2009, 456 pp. (in Russian).

    Google Scholar 

  24. M. K. Grachev, A. V. Edunov, G. I. Kurochkina, I. I. Levina, E. E. Nifantiev, Russ. J. Gen. Chem., 2011, 81, 322; DOI: https://doi.org/10.1134/S1070363211020083.

    Article  CAS  Google Scholar 

  25. W. Saenger, J. Jacob, K. Gessler, T. Steiner, D. Hoffmann, H. Sanbe, K. Koizumi, S. M. Smith, T. Takaha, Chem. Rev., 1998, 98, 1787; DOI: https://doi.org/10.1021/cr9700181.

    Article  CAS  PubMed  Google Scholar 

  26. S. Tian, H. Zhu, P. Forgo, V. T. D’Souza, J. Org. Chem., 2000, 65, 2624; DOI: https://doi.org/10.1021/jo991347r.

    Article  CAS  PubMed  Google Scholar 

  27. A.R. Khan, P. Forgo, K. J. Stine, V. T. D’Souza, Chem. Rev., 1998, 98, 1977; DOI: https://doi.org/10.1021/cr970012b.

    Article  CAS  PubMed  Google Scholar 

  28. W. Saenger, M. Noltmeyer, P. C. Manor, B. Hingerty, B. Klar, Bioorg. Chem., 1976, 5, 187; DOI: https://doi.org/10.1016/0045-2068(76)90007-9.

    Article  CAS  Google Scholar 

  29. M. K. Grachev, G. I. Kurochkina, A. V. Popkov, Russ. Chem. Bull., 2019, 68, 708; DOI: https://doi.org/10.1007/s11172-019-2477-4.

    Article  CAS  Google Scholar 

  30. Modified Cyclodextrins for Chiral Separation, Eds W. Tang, S.-C. Hg, D. Sun, Springer, New York, 2013, 258 pp.

    Google Scholar 

  31. J. Szejtli, Chem. Rev., 1998, 98, 1743; DOI: https://doi.org/10.1021/cr970022c.

    Article  CAS  PubMed  Google Scholar 

  32. B. Brady, Org. Synth., 2000, 77, 220.

    Article  CAS  Google Scholar 

  33. H.-S. Byun, O. R. Bittman, Org. Synth., 2000, 77, 225.

    Article  CAS  Google Scholar 

  34. H. Law, J. M. Benito, J. M. Garcia Fernandez, L. Jicsinszky, S. Crouzy, J. Defaye, J. Phys. Chem. B, 2011, 115, 7524; DOI: https://doi.org/10.1021/jp2035345.

    Article  CAS  PubMed  Google Scholar 

  35. G. Tripodo, Ch. Wischke, A. T. Neffe, A. Lendlein, Carbohydr. Res., 2013, 381, 59; DOI: https://doi.org/10.1016/j.carres.2013.08.018.

    Article  CAS  PubMed  Google Scholar 

  36. L. D. Melton, K. N. Slessor, Carbohydr. Res., 1971, 18, 29; DOI: https://doi.org/10.1016/S0008-6215(00)80256-6.

    Article  CAS  Google Scholar 

  37. M. Popr, S. Hybelbauerova, J. Jindrich, Beilstein J. Org. Chem., 2014, 10, 1390; DOI: https://doi.org/10.3762/bjoc.10.142.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. P. Gonil, W. Sajomsang, U. R. Ruktanonchai, N. Pimpha, I. Sramala, O. Nuchuchua, S. Saesoo, Carbohydr. Polym., 2011, 83, 905; DOI: https://doi.org/10.1016/j.carbpol.2010.08.080.

    Article  CAS  Google Scholar 

  39. J. B. Haff, Ch. Bieniarz, J. Org. Chem., 1994, 59, 7511; DOI: https://doi.org/10.1021/jo00103a056.

    Article  Google Scholar 

  40. V. V. Novokshonov, Nguyen Thi Thu Xuan, N. S. Shaglaeva, Russ. J. Org. Chem., 2019, 55, 1616; DOI: https://doi.org/10.1134/S1070428019100245.

    Article  CAS  Google Scholar 

  41. V. V. Novokshonov, Nguyen Thi Thu Xuan, S. N. Shaglaeva, T. A. Podgorbunskaya, V. V. Bayandin, Proc. Univ. Appl. Chem. Biotechnol., 2019, 9, 366; DOI: https://doi.org/10.21285/2227-2925-2019-9-3-366-375.

    CAS  Google Scholar 

  42. M. D. Mashkovsky, Lekarstvennye sredstva [Medicines] 16th Ed., Vol. 1, Novaya Volna, Moscow, 2019, 1216 pp. (in Russian).

    Google Scholar 

  43. L. Jicsinszky, K. Tuza, G. Cravotto, A. Porcheddu, F. Delogu, E. Colacino, Beilstein J. Org. Chem., 2017, 13, 1893; DOI: https://doi.org/10.3762/bjoc.13.184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. I. I. Stoikov, P. L. Padnya, O. A. Mostovaya, A. A. Vavilova, V. V. Gorbachuk, D. N. Shurpik, G. A. Evtyugin, Russ. Chem. Bull., 2019, 68, 1962; DOI: https://doi.org/10.1007/s11172-019-2655-4.

    Article  CAS  Google Scholar 

  45. X. Luo, A. Morrin, A. J. Killard, M. R. Smyth, Electroanalysis, 2006, 18, 319; DOI: https://doi.org/10.1002/elan.200503415.

    Article  CAS  Google Scholar 

  46. R. I. Gelb, L. M. Schwartz, D. A. Laufer, Bioorg. Chem., 1982, 11, 274; DOI: https://doi.org/10.1016/0045-2068(82)90003-7.

    Article  CAS  Google Scholar 

  47. A. P. Croft, R. A. Bartsch, Tetrahedron, 1983, 39, 1417; DOI: https://doi.org/10.1016/S0040-4020(01)88551-3.

    Article  CAS  Google Scholar 

  48. R. L. Vanetten, G. A. Clowes, J. Sebastian, M. L. Bender, J. Am. Chem. Soc., 1967, 89, 3253; DOI: https://doi.org/10.1021/JA00989A028.

    Article  CAS  Google Scholar 

  49. S. Tian, P. Forgo, V. T. D’Souza, Tetrahedron Lett., 1996, 37, 8309; DOI: https://doi.org/10.1016/0040-4039(96)01944-2.

    Article  CAS  Google Scholar 

  50. J. Jindrich, I. Tislerova, J. Org. Chem., 2005, 70, 9054; DOI: https://doi.org/10.1021/jo051339c.

    Article  CAS  PubMed  Google Scholar 

  51. G. G. Kordopati, G. M. Tsivgoulis, Tetrahedron Lett., 2018, 59, 2447; DOI: https://doi.org/10.1016/j.tetlet.2018.05.039.

    Article  CAS  Google Scholar 

  52. A. Miyawaki, Y. Takashima, H. Yamaguchi, A. Harada, Tetrahedron, 2008, 64, 8355; DOI: https://doi.org/10.1016/j.tet.2008.05.040.

    Article  CAS  Google Scholar 

  53. P. Zhang, L. Chang-Chun, A. W. Coleman, H. Parrot-Lopez, H. Galons, Tetrahedron Lett., 1991, 32, 2769; DOI: https://doi.org/10.1016/0040-4039(91)85081-F.

    Article  CAS  Google Scholar 

  54. G. Benkovics, M. Balint, E. Fenyvesi, E. Varga, S. Beni, K. Yannakopoulou, M. Malanga, Beilstein J. Org. Chem., 2019, 15, 710; DOI: https://doi.org/10.3762/bjoc.15.66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. M. Jouffroy, R. Gramage-Doria, D. Armspach, D. Matt, L. Toupet, Chem. Commun., 2012, 48, 6028; DOI: https://doi.org/10.1039/C2CC31302B.

    Article  CAS  Google Scholar 

  56. S. Guieu, M. Sollogoub, in Modern Synthetic Methods in Carbohydrate Chemistry: From Monosaccharides to Complex Glycoconjugates, Eds D. B. Werz, S. Vidal, Wiley-VCH Verlag, Weinheim, 2013, p. 241; DOI: https://doi.org/10.1002/9783527658947.ch9.

  57. M. Guitet, F. Marcelo, S. A. de Beaumais, Y. Zhang, J. Jimenez-Barbero, S. Tilloy, E. Monflier, M. Menand, M. Sollogoub, Eur. J. Org. Chem., 2013, 18, 3691; DOI: https://doi.org/10.1002/ejoc.201300190.

    Article  CAS  Google Scholar 

  58. O. Bistri, T. Lecourt, J.-M. Mallet, M. Sollogoub, P. Sinay, Chem. Biodiversity, 2004, 1, 129; DOI: https://doi.org/10.1002/cbdv.200490004.

    Article  CAS  Google Scholar 

  59. T. Lecourt, Y. Bleriot, R. Auzely-Velty, M. Sollogoub, Chem. Commun., 2010, 46, 2238; DOI: https://doi.org/10.1039/b921567k.

    Article  CAS  Google Scholar 

  60. J. Liu, B. Wang, C. Przybylski, O. Bistri-Aslanoff, M. Ménand, Y. Zhang, M. Sollogoub, Angew. Chem., Int. Ed., 2021, 60, 12090; DOI: https://doi.org/10.1002/anie.202102182.

    Article  CAS  Google Scholar 

  61. E. Engeldinger, D. Armspach, D. Matt, Angew. Chem., Int. Ed., 2001, 40, 2526; DOI: https://doi.org/10.1002/1521-3773(20010702)40:133.0.CO:2-T.

    Article  CAS  Google Scholar 

  62. M. Jouffroy, D. Armspach, D. Matt, Dalton Trans., 2015, 44, 12942; DOI: 10.1039/C5DT00667H.

    Article  CAS  PubMed  Google Scholar 

  63. B. Benmerad, P. Clair, D. Armspach, D. Matt, F. Balegroune, L. Toupet, Chem. Commun., 2006, 25, 2678; DOI: https://doi.org/10.1039/B603400D.

    Article  CAS  Google Scholar 

  64. D. Armspach, D. Matt, L. Toupet, Angew. Chem., Int. Ed., 2009, 48, 4555; DOI: https://doi.org/10.1002/anie.200901200.

    Article  CAS  Google Scholar 

  65. J. Li, X. J. Loh, Adv. Drug Delivery Rev., 2008, 60, 1000; DOI: https://doi.org/10.1016/j.addr.2008.02.011.

    Article  CAS  Google Scholar 

  66. E. Rizzarelli, G. Vecchio, Coord. Chem. Rev., 1999, 188, 343; DOI: https://doi.org/10.1016/S0010-8545(99)00059-4.

    Article  CAS  Google Scholar 

  67. S. V. Chilajwar, P. P. Pednekar, K. R. Jadha, G. J. C. Gupta, V. J. Kadam, Expert Opin. Drug Delivery, 2014, 11, 111; DOI: https://doi.org/10.1517/17425247.2014.865013.

    Article  CAS  Google Scholar 

  68. F. I. Donati, in Cyclodextrins in Pharmaceutics, Cosmetics, and Biomedicine: Current and Future Industrial Applications, Ed. E. Bilensoy, John Wiley&Sons, Hoboken, 2011, Ch. 19, p. 363.

  69. S. A. Kedik, A. V. Panov, V. S. Tyukova, M. S. Zolotareva, Razrabotka i registratsiya lekarstv. sredstv [Drug Development & Registration] 2016, No. 3, 68 (in Russian).

  70. F. Manakker, T. Vermonden, C. F. Nostrum, W. E. Hennink, Biomacromolecules, 2009, 10, 3157; DOI: https://doi.org/10.1021/bm901065f.

    Article  PubMed  CAS  Google Scholar 

  71. R. Mejia-Ariza, L. Grana-Suarez, W. Verboom, J. Huskens, J. Mater. Chem. B, 2017, 5, 36; DOI: https://doi.org/10.1039/c6tb02776h.

    Article  CAS  PubMed  Google Scholar 

  72. S. I. Dikhtyarev, M. V. Shteyngard, L. A. Chayka, Itogi nauki i tekhniki. Ser. Mikrobiologiya [Advances in Science and Technology, Ser. Microbiology], 1988, 20, 97 (in Russian).

    CAS  Google Scholar 

  73. M. V. Papezhuk, V. A. Volynkin, T. A. Stroganova, G. D. Krapivin, T. R. Usacheva, L. P. Thi, Macroheterocycles, 2020, 13, 64; DOI: https://doi.org/10.6060/mhc191281v.

    Article  CAS  Google Scholar 

  74. M. A. Malenkovskaya, D. A. Shipilov, M. K. Grachev, Russ. J. Bioorg. Chem., 2020, 46, 71; DOI: https://doi.org/10.1134/S1068162020010045.

    Article  CAS  Google Scholar 

  75. T. Loftsson, M. Brewster, J. Pharm. Sci., 1996, 85, 1017; DOI: https://doi.org/10.1021/js950534b.

    Article  CAS  PubMed  Google Scholar 

  76. T. Loftsson, D. Duchene, Int. J. Pharm., 2007, 329, 1; DOI: https://doi.org/10.1016/j.ijpharm.2006.10.044.

    Article  CAS  PubMed  Google Scholar 

  77. T. Loftsson, D. Hreinsdóttir, M. Masson, Int. J. Pharm., 2005, 302, 18; DOI: https://doi.org/10.1016/j.jpharm.2005.05.042.

    Article  CAS  PubMed  Google Scholar 

  78. D. A. Shipilov, G. I. Kurochkina, A. A. Sergievich, M. K. Grachev, Macroheterocycles, 2017, 10, 238; DOI: https://doi.org/10.6060/mhc170510s.

    Article  CAS  Google Scholar 

  79. A. V. Edunov, G. I. Kurochkina, M. K. Grachev, I. I. Levina, T. A. Batalova, E. E. Nifant’ev, Russ. J. Org. Chem., 2011, 47, 981; DOI: https://doi.org/10.1134/S1070428011070037.

    Article  CAS  Google Scholar 

  80. D. A. Shipilov, M. A. Malenkovskaya, N. V. Kutyasheva, G. I. Kurochkina, A. A. Sergievich, M. K. Grachev, Russ. Chem. Bull., 2019, 68, 862; DOI: https://doi.org/10.1007/s11172-019-2497-0.

    Article  CAS  Google Scholar 

  81. M. K. Grachev, A. V. Edunov, G. I. Kurochkina, N. O. Soboleva, L. K. Vasyanina, E. E. Nifant’ev, Russ. Chem. Bull., 2012, 61, 181; DOI: https://doi.org/10.1007/s11172-012-0025-6.

    Article  CAS  Google Scholar 

  82. K. Kaminski, M. Kujdowicz, M. Kajta, M. Nowakowska, K. Szczubiaika, Eur. J. Pharm. Biopharm., 2015, 91, 111; DOI: https://doi.org/10.1016/j.ejpb.2015.02.002.

    Article  CAS  PubMed  Google Scholar 

  83. R. Matten, T. Hoare, Int. J. Pharm., 2014, 472, 315; DOI: https://doi.org/10.1016/j.ijpharm.2014.06.046.

    Article  CAS  Google Scholar 

  84. C. M. Hsu, S. C. Yu, F. J. Tsai, Y. Tsai, Colloids Surf., B, 2019, 180, 68; DOI: https://doi.org/10.1016/j.colsurfb.2019.04.020.

    Article  CAS  Google Scholar 

  85. V. J. Stella, R. A. Rajewski, Int. J. Pharm., 2020, 583, 119396; DOI: https://doi.org/10.1016/j.iipharm.2020.119396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. D. R. Luke, K. Tomaszewski, B. Damle, H. T. Schlamm, J. Pharm. Sci., 2010, 99, 3291; DOI: https://doi.org/10.1002/jps.22109.

    Article  CAS  PubMed  Google Scholar 

  87. C. S. Magnolim, C. Moriwaki, A. C. Nogueira, F. Sato, M. L. Baesso, A. M. Neto, G. Matioli, Food Chem., 2014, 153, 361; DOI: https://doi.org/10.1016/j.foodchem.2013.12.067.

    Article  CAS  Google Scholar 

  88. T. R. Usacheva, D. N. Kabirov, D. A. Beregova, G. A. Gamov, V. A. Sharnin, M. Biondi, L. Mayol, C. Giancola, J. Therm. Anal. Calorim., 2019, 138, 417; DOI: https://doi.org/10.1007/s10973-019-08136-5.

    Article  CAS  Google Scholar 

  89. D. Kabirov, T. Silvestri, M. Niccoli, T. Usacheva, L. Mayol, M. Biondi, C. Giancola, J. Therm. Anal. Calorim., 2020; DOI: https://doi.org/10.1007/s10973-020-10381-y.

  90. J. D. Heidel, Cold Spring Harbor Protoc., 2011, 11, 1392; DOI: https://doi.org/10.1101/pdb.prot066654.

    Google Scholar 

  91. W.-F. Lai, H.-S. Jung, PLOS ONE, 2014, 9, e100258; DOI: https://doi.org/10.1371/journal.pone.0100258.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. J. Szejtli, L. Szente, Proc. 8th Int. Symp. on Cyclodextrins, Budapest, Hungary, March, 31–April, 2, 1996, p. 163.

  93. M. E. Skold, G. D. Thyne, J. W. Drexler, J. E. McCray, J. Contam. Hydrol., 2009, 107, 108; DOI: https://doi.org/10.1016/j.jconhyd.2009.04.006.

    Article  CAS  PubMed  Google Scholar 

  94. X. Hu, G. Xu, H. Zhang, M. Li, Y. Tu, X. Xie, Y. Zhu, L. Jiang, X. Zhu, X. Ji, Y. Li, A. Li, ACS Appl. Mater. Interfaces, 2020, 12, 12165; DOI: https://doi.org/10.1021/acsami.0c00597.

    Article  CAS  PubMed  Google Scholar 

  95. X. Liao, Q. Zhang, ACS Appl. Polym. Mater., 2019, 1, 2089; DOI: https://doi.org/10.1021/acsapm.9b00399.

    Article  CAS  Google Scholar 

  96. A. Alsbaiee, B. J. Smith, L. Xiao, Y. Ling, D. E. Helbling, W. R. Dichtel, Nature, 2016, 529, 190; DOI: https://doi.org/10.1038/nature16185.

    Article  CAS  PubMed  Google Scholar 

  97. Z. Wang, P. Zhang, F. Hu, Y. Zhao, L. Zhu, Carbohydr. Polym., 2017, 177, DOI: https://doi.org/10.1016/j.carbpol.2017.08.059.

  98. R. Breslow, S. D. Dong, Chem. Rev., 1998, 98, 1997; DOI: https://doi.org/10.1021/cr970011j.

    Article  CAS  PubMed  Google Scholar 

  99. R. Breslow, L. E. Overman, J. Am. Chem. Soc., 1970, 92, 1075; DOI: https://doi.org/10.1021/ja00707a062.

    Article  CAS  PubMed  Google Scholar 

  100. R. Breslow, P. J. Duggan, J. P. Light, J. Am. Chem. Soc., 1992, 114, 3982; DOI: https://doi.org/10.1021/ja00036a059.

    Article  CAS  Google Scholar 

  101. M. Rezac, R. Breslow, Tetrahedron Lett., 1997, 38, 5763; DOI: https://doi.org/10.1016/S0040-4039(97)01289-6.

    Article  CAS  Google Scholar 

  102. M. Sawamura, K. Kitayama, Y. Ito, Tetrahedron: Asymmetry, 1993, 4, 1829; DOI: https://doi.org/10.1016/S0957-4166(00)80423-1.

    Article  CAS  Google Scholar 

  103. M. T. Reetz, J. Rudolph, Tetrahedron: Asymmetry, 1993, 4, 2405; DOI: https://doi.org/10.1016/S0957-4166(00)82210-7.

    Article  CAS  Google Scholar 

  104. E. E. Nifantiev, M. K. Grachev, S. Yu. Burmistrov, Chem. Rev., 2000, 100, 3755; DOI: https://doi.org/10.1021/cr9601371.

    Article  CAS  PubMed  Google Scholar 

  105. S. V. Kurkov, T. Loftsson, Int. J. Pharm., 2013, 453, 167; DOI: https://doi.org/10.1016/j.iipharm.2012.06.055.

    Article  CAS  PubMed  Google Scholar 

  106. H. Aghahosseini, A. Ramazani, Curr. Org. Chem., 2016, 20, 2817; DOI: https://doi.org/10.2174/1385272820666160328201207.

    Article  CAS  Google Scholar 

  107. X. Wang, M. L. Brusseau, Environ. Sci. Technol., 1995, 29, 2632; DOI: https://doi.org/10.1021/es00010a026.

    Article  CAS  PubMed  Google Scholar 

  108. M. L. Brusseau, X. Wang, W. J. Wang, Environ. Sci. Technol., 1997, 31, 1087; DOI: https://doi.org/10.1021/es960612c.

    Article  CAS  Google Scholar 

  109. P. Zhang, C. Tugny, J. M. Suárez, M. Guitet, E. Derat, N. Vanthuyne, Y. Zhang, O. Bistri, V. Mouriès-Mansuy, M. Ménand, S. Roland, L. Fensterbank, M. Sollogoub, Chem, 2017, 3, 174; DOI: https://doi.org/10.1016/j.chempr.2017.05.009.

    Article  CAS  Google Scholar 

  110. G. Xu, S. Leloux, P. Zhang, J. M. Suárez, Y. Zhang, E. Derat, M. Ménand, O. Bistri-Aslanoff, S. Roland, T. Leyssens, O. Riant, M. Sollogoub, Angew. Chem., Int. Ed., 2020, 59, 7591; DOI: https://doi.org/10.1002/anie.202001733.

    Article  CAS  Google Scholar 

  111. C. F. Potter, N. R. Russell, M. McNamara, J. Inclusion Phenom. Macrocyclic Chem., 2006, 56, 395; DOI: https://doi.org/10.1007/s10847-006-9122-1.

    Article  CAS  Google Scholar 

  112. Y. Matsui, Y. Yokoi, K. Mochida, Chem. Lett., 1976, 10, 1037; DOI: https://doi.org/10.1246/cl.1976.1037.

    Article  Google Scholar 

  113. I. A. Ananyeva, E. N. Shapovalova, S. A. Lopatin, O. A. Shpigun, V. P. Varlamov, V. A. Davankov, Vestn. MGU. Ser. 2. Khimiya [Moscow Univ. Bull. Ser. Khim. (Engl. Transl.)], 2001, 42, 273 (in Russian).

    Google Scholar 

  114. H. Zhang, T. Tan, C. Hetenyi, Y. Lv, D. van der Spoel, J. Phys. Chem. C, 2014, 118, 7163; DOI: https://doi.org/10.1021/jp412041d.

    Article  CAS  Google Scholar 

  115. E. Cho, S. Jung, Molecules, 2015, 20, 19620; DOI: https://doi.org/10.3390/molecules201019620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Y. Liu, C. C. You, B. Li, Chem. Eur. J., 2001, 7, 1281; DOI: https://doi.org/10.1002/1521-3765(20010316)7:6<1281::AID-CHEM1281>3.0.CO;2-H.

    Article  CAS  PubMed  Google Scholar 

  117. A. P. Singh, P. R. Cabrer, E. Alvarez-Parrilla, F. Meijide, J. V. J. Tato, J. Inclusion Phenom. Macrocyclic Chem., 1999, 35, 335; DOI: https://doi.org/10.1021/la9817359.

    Article  CAS  Google Scholar 

  118. D. Dong, D. Baigl, Y. Cui, P. Sinay, M. Sollogoub, Y. Zhang, Tetrahedron, 2007, 63, 2973; DOI: https://doi.org/10.1016/j.tet.2007.01.065.

    Article  CAS  Google Scholar 

  119. Y. Liu, Y. Chen, Acc. Chem. Res., 2006, 39, 953; DOI: https://doi.org/10.1021/ar0502275.

    Article  CAS  Google Scholar 

  120. Y. Liu, Y. Chen, B. Li, T. Wada, Y. Inoue, Chem. Eur. J., 2001, 7, 2528; DOI: https://doi.org/10.1002/1521-3765(20010618)7:12<2528::aid-chem25280>3.0.co;2-9.

    Article  CAS  PubMed  Google Scholar 

  121. Y. Liu, Y. W. Yang, L. Li, Y. Chen, Org. Biomol. Chem., 2004, 2, 1542; DOI: https://doi.org/10.1039/b402841d.

    Article  CAS  PubMed  Google Scholar 

  122. Y. Liu, L. Li, H. Y. Zhang, Y. Song, J. Org. Chem., 2003, 68, 527; DOI: https://doi.org/10.1021/jo025919a.

    Article  CAS  PubMed  Google Scholar 

  123. Y. Liu, Y. L. Zhao, Y. Chen, F. Ding, G. S. Chen, Bio-conjugate Chem., 2004, 15, 1236; DOI: https://doi.org/10.1021/bc049870m.

    CAS  Google Scholar 

  124. Y. Liu, Y. Song, Y. Chen, X. Q. Li, F. Ding, R. Q. Zhong, Chem. Eur. J., 2004, 10, 3685; DOI: https://doi.org/10.1002/chem.200305724.

    Article  CAS  PubMed  Google Scholar 

  125. Y. Dai, S. Wang, J. Zhou, J. Tang, W. Tang, Electrophoresis, 2013, 34, 833; DOI: https://doi.org/10.1002/elps.201200473.

    Article  CAS  PubMed  Google Scholar 

  126. D. A. Shipilov, G. I. Kurochkina, A. K. Akhlebinin, N. V. Kutyasheva, M. K. Grachev, Macroheterocycles, 2019, 12, 94; DOI: https://doi.org/10.6060/mhc181110s.

    Article  CAS  Google Scholar 

  127. S. Kumar, R. Rao, J. Inclusion Phenom. Macrocyclic Chem., 2019, 94, 11; DOI: https://doi.org/10.1007/s10847-019-00903-z.

    Article  CAS  Google Scholar 

  128. F. Trotta, M. Zanetti, R. Cavalli, Beilstein J. Org. Chem., 2012, 8, 2091; DOI: https://doi.org/10.3762/bjoc.8.235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. S. Kumar, P. Dalal, R. Rao, in Colloid Science in Pharmaceutical Nanotechnology, Ed. S. Karakuş, IntechOpen, 2020, 24 pp.; DOI: https://doi.org/10.5772/intechopen.90365.

  130. S. Anandam, S. Selvamuthukumar, J. Porous Mater., 2014, 21, 1015; DOI: https://doi.org/10.1007/s10934-014-9851-2.

    Article  CAS  Google Scholar 

  131. S. Swaminanthan, P. R. Vavia, F. Trotta, R. Covalli, S. Tumbiolo, L. Bertinetti, S. Coluccia, J. Inclusion Phenom. Macrocyclic Chem., 2013, 76, 201; DOI: https://doi.org/10.1007/s10847-012-0192-y.

    Article  CAS  Google Scholar 

  132. S. S. Darandale, P. R. Vavia, J. Inclusion Phenom. Macrocyclic Chem., 2013, 75, 315; DOI: https://doi.org/10.1007/s10847-012-086-9.

    Article  CAS  Google Scholar 

  133. M. R. Rao, C. Shirsath, AAPS PharmSciTech, 2017, 18, 1728; DOI: https://doi.org/10.1208/s12349-016-0636-6.

    Article  CAS  PubMed  Google Scholar 

  134. S. Kumar, S. Pooja, F. Trotta, R. Rao, Pharmaceutics, 2018, 10, 169; DOI: https://doi.org/10.3390/pharmaceutics10040169.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Papezhuk.

Ethics declarations

The authors declare no competing interests.

Additional information

This work was financially supported by the Ministry of Science and Education of the Russian Federation (Project No. FZEN-2020-0022).

No human or animal subjects were used in this research.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 430–442, March, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papezhuk, M.V., Volynkin, V.A. & Panyushkin, V.T. The structure and properties of functionalized cyclodextrins and complex compounds based on them. Russ Chem Bull 71, 430–442 (2022). https://doi.org/10.1007/s11172-022-3430-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3430-5

Key words

Navigation