Skip to main content
Log in

New catalytic systems based on fluorine-containing titanium(iv) alkoxides for the synthesis of ultrahigh-molecular-weight polyethylene and olefin elastomers

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

An Erratum to this article was published on 01 December 2022

This article has been updated

Abstract

The catalytic activity of the systems based on titanium(iv) alkoxides (Ti(OPri)4, Ti(OPri)2(OCH(CF3)2)2, and Ti(OCH(CF3)2)4) and mixtures of alkylaluminum chlorides (Et2AlCl or Et3Al2Cl3) with dibutylmagnesium in ethylene polymerization and ethylene copolymerization with propylene and 5-ethylidene-2-norbornene was studied. Ultrahigh-molecular-weight polyethylene with the molecular weight reaching 4.9 · 106 Da was found to be formed in the homopolymerization reaction, whereas copolymerization gives ter-copolymers containing propylene (up to 35 mol.%) and 5-ethylidene-2-norbornene (4.3 mol.%) units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. S. M. Kurtz, in UHMWPE Handbook: Ultra-high Molecular Weight Polyethylene in Total Joint Replacement, Elsevier Academic Press, San Diego, 2004.

    Google Scholar 

  2. A. J. Peacock, Handbook of Polyethylene: Structures, Properties and Applications, Marcel Dekker, New York, 2000, ISBN 0471166286.

    Book  Google Scholar 

  3. A. N. Ozerin, S. S. Ivanchev, S. N. Chvalun, V. A. Aulov, N. I. Ivancheva, N. F. Bakeev, Polym. Sci., Ser. A, 2012, 54, 950; DOI: https://doi.org/10.1134/S0965545X12100033.

    Article  CAS  Google Scholar 

  4. B. P. Rotzinger, H. D. Chanzy, P. Smith, Polymer, 1989, 30, 1814; DOI: https://doi.org/10.1016/0032-3861(89)90350-9.

    Article  CAS  Google Scholar 

  5. S. Ronca, G. Forte, H. Tjaden, S. Rastogi, Ind. Eng. Chem. Res., 2015, 54, 7373; DOI: https://doi.org/10.1021/acs.iecr.5b01469.

    Article  CAS  Google Scholar 

  6. A. A. Antonov, K. P. Bryliakov, Eur. Polym. J., 2021, 142, 110162; DOI: https://doi.org/10.1016/j.eurpolymj.2020.110162.

    Article  CAS  Google Scholar 

  7. S. Ch. Gagieva, V. A. Tuskaev, R. U. Takazova, A. G. Buyanovskaya, O. V. Smirnova, N. M. Bravaya, B. M. Bulychev, Russ. Chem. Bull., 2019, 68, 2114; DOI: https://doi.org/10.1007/s11172-019-2675-0.

    Article  CAS  Google Scholar 

  8. Yu. N. Belokon’, S. Ch. Gagieva, T. A. Sukhova, A. B. Dmitriev, K. A. Lyssenko, N. M. Bravaya, B. M. Bulychev, D. Seebach, Russ. Chem. Bull., 2005, 54, 2348; DOI: https://doi.org/10.1007/s11172-006-0121-6.

    Article  Google Scholar 

  9. V. A. Tuskaev, S. Ch. Gagieva, D. A. Kurmaev, I. V. Fedyanin, S. V. Zubkevich, B. M. Bulychev, Russ. Chem. Bull., 2018, 67, 377; DOI: https://doi.org/10.1007/s11172-018-2084-9.

    Article  CAS  Google Scholar 

  10. V. A. Tuskaev, S. Ch. Gagiev.a, D. A. Kurmaev, S. V. Zubkevich, P. V. Dorovatovskii, V. N. Khrustalev, E. S. Mikhaylik, E. K. Golubev, M. I. Buzin, G. G. Nikiforova, V. G. Vasil’ev, T. M. Zvukova, B. M. Bulychev, Inorg. Chim. Acta, 2019, 498, 119159; DOI: https://doi.org/10.1016/j.ica.2019.119159.

    Article  CAS  Google Scholar 

  11. V. A. Tuskaev, S. Ch. Gagieva, D. A. Kurmaev, V. N. Khrustalev, P. V. Dorovatovskii, E. S. Mikhaylik, E. K. Golubev, M. I. Buzin, S. V. Zubkevich, G. G. Nikiforova, V. G. Vasil’ev, B. M. Bulychev, K. F. Magomedov, J. Organomet. Chem., 2018, 877, 85; DOI: https://doi.org/10.1016/j.jorganchem.2018.09.014.

    Article  CAS  Google Scholar 

  12. V. A. Tuskaev, S. Ch. Gagieva, D. A. Kurmaev, E. K. Melnikova, S. V. Zubkevich, M. I. Buzin, G. G. Nikiforova, V. G. Vasil’ev, D. Saracheno, V. S. Bogdanov, V. I. Privalov, B. M. Bulychev, Appl. Organomet. Chem., 2020; e5933; DOI: https://doi.org/10.1002/aoc.5933.

  13. V. A. Tuskaev, S. Ch. Gagieva, A. S. Lyadov, D. A. Kurmaev, G. G. Nikiforova, V. G. Vasil’ev, S. V. Zubkevich, D. Saracheno, A. I. Sizov, V. I. Privalov, B. M. Bulychev, Petrol. Chem., 2020, 60, 329; DOI: https://doi.org/10.1134/S0965544120030226.

    Article  CAS  Google Scholar 

  14. V. A. Tuskaev, S. Ch. Gagieva, A. S. Lyadov, D. A. Kurmaev, G. G. Nikiforova, V. G. Vasil’ev, S. V. Zubkevich, D. Saracheno, A. I. Sizov, V. I. Privalov, B. M. Bulychev, Petrol. Chem., 2020, 60, 827; DOI: https://doi.org/10.1134/S0965544120070142.

    Article  CAS  Google Scholar 

  15. V. A. Tuskaev, S. Ch. Gagieva, D. A. Kurmaev, V. S. Bogdanov, K. F. Magomedov, Elena S. Mikhaylik, E. K. Golubev, M. I. Buzin, G. G. Nikiforova, V. G. Vasil’ev, V. N. Khrustalev, P. V. Dorovatovskii, A. V. Bakirov, M. A. Shcherbina, P. B. Dzhevakov, B. M. Bulychev, Appl. Organomet. Chem., 2021, e6256; DOI: https://doi.org/10.1002/aoc.6256.

  16. J. Skupiñska, Chem. Rev., 1991, 91, 613; DOI: https://doi.org/10.1021/cr00004a007.

    Article  Google Scholar 

  17. S. M. Pillai, M. Ravindranathan, S. Sivaram, Chem. Rev., 1986, 86, 353; DOI: https://doi.org/10.1021/cr00072a004.

    Article  CAS  Google Scholar 

  18. A. W. Al-Sa’doun, Appl. Catal., A, 1993, 105, 1; DOI: https://doi.org/10.1016/0926-860X(93)85131-8.

    Article  Google Scholar 

  19. J.-B. Cazaux, P. Braunstein, L. Magna, L. Saussine, H. Olivier-Bourbigou, Eur. J. Inorg. Chem., 2009, 2942; DOI: https://doi.org/10.1002/ejic.200900322.

  20. B. Zhu, C. Guo, Z. Liu, Y. Yin, J. Appl. Polym. Sci., 2004, 94, 2451; DOI: https://doi.org/10.1002/app.21190.

    Article  CAS  Google Scholar 

  21. G. Natta, L. Porri, A. Carbonaro, G. Stoppa, Macromol. Chem., 1964, 77, 114; DOI: https://doi.org/10.1002/macp.1964.020770111.

    Article  CAS  Google Scholar 

  22. G. Natta, L. Porri, A. Carbonaro, Macromol. Chem., 1964, 77, 126; DOI: https://doi.org/10.1002/macp.1964.020770112.

    Article  CAS  Google Scholar 

  23. D. H. Dawes, C. A. Winkler, J. Polym. Sci., Part A: Polym. Chem., 1964, 2, 3029; DOI: https://doi.org/10.1002/pol.1964.100020703.

    Google Scholar 

  24. L. Oliva, P. Longo, C. Pellecchia, Macromol. Chem. Commun., 1988, 9; DOI: https://doi.org/10.1002/marc.1988.030090201.

  25. A. Mehta, G. Tembe, P. Parikh, G. Mehta, Polym. Int., 2014, 63, 206; DOI: https://doi.org/10.1002/pi.4484.

    Article  CAS  Google Scholar 

  26. Y. V. Kissin, L. A. Rishina, S. S. Lalayan, V. G. Krasheninnikov, J. Polym. Sci., Part A: Polym. Chem., 2015, 53, 2124; DOI: https://doi.org/10.1002/pola.27651.

    Article  CAS  Google Scholar 

  27. L. A. Rishina, Y. V. Kissin, S. S. Lalayan, V. G. Krasheninnikov, E. O. Perepelitsina, T. I. Medintseva, Polym. Sci., Ser. B, 2016, 58, 152; DOI: https://doi.org/10.1134/S1560090416020056.

    Article  CAS  Google Scholar 

  28. V. Prakash Reddy, Organofluorine Chemistry: Synthesis and Applications, Elsevier, Amsterdam, 2020.

    Google Scholar 

  29. A. M. Semenova, M. G. Pervova, M. A. Ezhikova, M. I. Kodess, A. Ya. Zapevalov, A. V. Pestov, Russ. Chem. Bull., 2021, 70, 933; DOI: https://doi.org/10.1007/s11172-021-3169-4.

    Article  CAS  Google Scholar 

  30. C. Campbell, S. G. Bott, R. Larsen, W. G. Van Der Sluys, Inorg. Chem., 1994, 33, 4950; DOI: https://doi.org/10.1021/ic00100a019.

    Article  CAS  Google Scholar 

  31. J. Fisher, W. G. Van DerSluys, J. C. Huffman, J. Sears, Synth. React. Inorg. Met. Org. Chem., 1993, 23, 479; DOI: https://doi.org/10.1080/15533179308016651.

    Article  CAS  Google Scholar 

  32. G. Leone, G. Zanchin, R. Di Girolamo, F. De Stefano, C. Lorber, C. De Rosa, G. Ricci, F. Bertini, Macromolecules 2020, 53, 5881. DOI: https://doi.org/10.1021/acs.macromol.0c01123.

    Article  CAS  Google Scholar 

  33. M. Mitani, J. Mohri, Y. Yoshida, J. Saito, S. Ishii, K. Tsuru, S. Matsui, R. Furuyama, T. Nakano, H. Tanaka, S. Kojoh, T. Matsugi, N. Kashiwa, T. Fujita, Living J. Am. Chem. Soc., 2002, 124, 3327; DOI: https://doi.org/10.1021/ja0117581.

    Article  CAS  PubMed  Google Scholar 

  34. M. Mitani, R. Furuyama, J. Mohri, J. Saito, S. Ishii, H. Terao, T. Nakano, H. Tanaka, T. Fujita, J. Am. Chem. Soc., 2003, 125, 4293; DOI: https://doi.org/10.1021/ja029560j.

    Article  CAS  PubMed  Google Scholar 

  35. S. Ishii, R. Furuyama, N. Matsukawa, J. Saito, M. Mitani, H. Tanaka, T. Fujita, Macromol. Rapid Commun., 2003, 24, 452; DOI: https://doi.org/10.1002/marc.200390072.

    Article  CAS  Google Scholar 

  36. M. C. W. Chan, S. C. F. Kui, J. M. Cole, G. J. McIntyre, S. Matsui, N. Zhu, K.-H. Tam, Chem. — Eur. J., 2006, 12, 2607; DOI: https://doi.org/10.1002/chem.200501054.

    Article  CAS  PubMed  Google Scholar 

  37. P. Cossee, J. Catal., 1964, 3, 80; DOI: https://doi.org/10.1016/0021-9517(64)90095-8.

    Article  CAS  Google Scholar 

  38. A. J. Gordon, R. A. Ford, The Chemist’s companion, Wiley, New-York, London, Sydney, Toronto, 1972.

    Google Scholar 

  39. B. Wunderlich, C. M. Cormier, J. Polym. Sci., Part A-2:Polym. Phys., 1967, 5, 987; DOI: https://doi.org/10.1002/pol.1967.160050514.

    Article  CAS  Google Scholar 

  40. F. Neese, Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2012, 2, 73; DOI: https://doi.org/10.1002/wcms.81.

    CAS  Google Scholar 

  41. F. Neese, Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2017, 8, e1327; DOI: https://doi.org/10.1002/wcms.1327.

    Google Scholar 

  42. C. Adamo, V. Barone, J. Chem. Phys., 1999, 110, 6158; DOI: https://doi.org/10.1063/1.478522.

    Article  CAS  Google Scholar 

  43. F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297; DOI: https://doi.org/10.1039/B508541A.

    Article  CAS  PubMed  Google Scholar 

  44. J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865; DOI: https://doi.org/10.1103/PhysRevLett.77.3865.

    Article  CAS  PubMed  Google Scholar 

  45. J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1997, 78, 1396; DOI: https://doi.org/10.1103/PhysRevLett.78.1396.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. M. Bulychev.

Additional information

Dedicated to Academician of the Russian Academy of Sciences O. M. Nefedov on the occasion of his 90th birthday.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 76–82, January, 2022.

This was financially carried out by the Russian Science Foundation (Project No. 18-13-00375). The NMR spectroscopic studies of the copolymers were performed in terms of state assignment “Substances and Materials for Providing Safety, Reliability, and Energy Effi ciency” (Project No. AAAA- A21- 121011590086-0). The DSC studies were carried out on the equipment of the Center of Investigation of Structure of Molecules at the A. N. Nesmeyanov Institute of Organoelement Compounds (Russian Academy of Sciences) supported by the Ministry of Science and Higher Education of the Russian Federation. The catalytic activity of titanium alkoxides on the model reaction of ethylene polymerization and the properties of the prepared polyethylene samples were studied in the framework of the Program of Development of the Moscow University Interdisciplinary Scientifi c Educational School “Future of the Planet and Global Environmental Changes.”

No human or animal subjects were used in this study.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuskaev, V.A., Bogdanov, V.S., Gagieva, S.C. et al. New catalytic systems based on fluorine-containing titanium(iv) alkoxides for the synthesis of ultrahigh-molecular-weight polyethylene and olefin elastomers. Russ Chem Bull 71, 76–82 (2022). https://doi.org/10.1007/s11172-022-3379-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3379-4

Key words

Navigation