Skip to main content
Log in

Olefin Polymerization Behavior of Titanium(IV) Complexes with Fluorinated and Non-fluorinated Aliphatic Phenoxyimine Ligands

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

A series of Ti(IV) dichloride and dialkoxide complexes with phenoxyimine ligands containing fluorinated and nonfluorinated aliphatic imine fragments have been synthesized. The molecular structures of complexes 1 and 4 were established by single-crystal X-ray diffraction studies. The complexes adopt a distorted octahedral coordination structure around the titanium atom and two oxygen atoms are situated in trans position while two nitrogen atoms and two outgoing ligands (Cl or iPrO) are situated in cis position. Effect of activators (MMAO-12 and combinations EtnAlCl3−n + Bu2Mg) and outgoing ligand (Cl or iPrO) nature on the catalytic activity and properties of the resulting polymers was studied. The Ti complexes, despite the nature of the outgoing ligands (Cl or iPrO) in the presence of Al/Mg activators, was found to display a high ethylene polymerization activity in the range 1600–3830 kgpolymer·molTi−1·h−1·atm−1 with a viscosity average molecular weight (Mv) value in the range 1.1×106−7.1×106 Dalton (Da). The resulting UHMWPE can be processed by a solventless method into high-strength and high-modulus oriented films. The rheological characteristics of a polymer melt have been studied. The absence of a cross-over point did not allow to compare the values of the molecular weight distribution of polymers obtained on fluorinated and non-fluorinated pre-catalysts, however, the estimation of the entanglement density is in good agreement with the mechanical characteristics of oriented films. Upon activation with methylalumoxane, the activity of the complexes decreased very significantly; however, a polymer with a molecular weight of about 12 million Da was obtained. In the process of ethylene/octene-1 copolymerization, fluorine-containing precatalysts showed a clear advantage over non-fluorinated analogues both in activity and in comonomer content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mitani, M.; Saito, J.; Ishii, S.; Nakayama, Y.; Makio, H.; Matsukawa, N.; Matsui, S.; Mohri, J.; Furuyama, R.; Terao, H.; Bando, H.; Tanaka, H.; Fujita, T. FI Catalysts: new olefin polymerization catalysts for the creation of value-added polymers. Chem. Rec. 2004, 4, 137–158.

    Article  PubMed  CAS  Google Scholar 

  2. Makio, H.; Fujita, T. Development and application of FI catalysts for olefin polymerization: unique catalysis and distinctive polymer formation. Acc. Chem. Res. 2009, 42, 1532–1544.

    Article  PubMed  CAS  Google Scholar 

  3. Matsugi, T.; Fujita, T. High-performance olefin polymerization catalysts discovered on the basis of a new catalyst design concept. Chem. Soc. Rev. 2008, 37, 1264–1277.

    Article  PubMed  CAS  Google Scholar 

  4. Makio, H.; Terao, H.; Iwashita, A.; Fujita, T. FI Catalysts for olefin polymerization—a comprehensive treatment. Chem. Rev. 2011, 111, 2363–2449.

    Article  PubMed  CAS  Google Scholar 

  5. Matsui, S.; Mitani, M.; Saito, J.; Tohi, Y.; Makio, H.; Matsukawa, N.; Takagi, Y.; Tsuru, K.; Nitabaru, M.; Nakano, T.; Tanaka, H.; Kashiwa, N.; Fujita, T. A Family of zirconium complexes having two phenoxy-imine chelate ligands for olefin polymerization. J. Am. Chem. Soc. 2001, 123, 6847–6856.

    Article  CAS  Google Scholar 

  6. Gao, Y.; Christianson, M. D.; Wang, Y.; Chen, J.; Marshall, S.; Klosin, J.; Lohr, T. L.; and Marks T. J. Unexpected precatalyst (σ-ligand effects in phenoxyimine Zr-catalyzed ethylene/1-octene copolymerizations. J. Am. Chem. Soc. 2019, 141, 7822–7830.

    Article  PubMed  CAS  Google Scholar 

  7. Malinskaya, M. Yu.; Ivancheva, N. I.; Oleinik, I. I.; Tolstikov, G. A.; Ivanchev, S. S. Catalytic activity of systems based on titanium bis(phenoxy imine) complexes: effect of the ligand structure. Russ. J. Appl. Chem. 2007, 80, 1515–1522.

    Article  CAS  Google Scholar 

  8. Ivancheva, N. I.; Malinskaya, M. Yu.; Ivanchev, S. S.; Oleinik, I. I.; Kochnev, A. I.; Tolstikov, G. A. Ethylene polymerization on titanium phenoxyimine complexes with different structures. Kinet. Catal. 2007, 48, 829–834.

    Article  CAS  Google Scholar 

  9. Matsukawa, N.; Ishii, S.; Furuyama, R.; Saito, J.; Mitani, M.; Makio, H.; Tanaka, H.; Fujita, T. Polyolefin structural control using phenoxy-imine ligated Group 4 transition metal complex catalysts. e-Polymer 2003, 021.

  10. Mitani, M.; Mohri, J.; Yoshida, Y.; Saito, J.; Ishii, S.; Tsuru, K.; Matsui, S.; Furuyama, R., Nakano, T., Tanaka, H., Kojoh, S., Matsugi, T., Kashiwa, N.; Fujita, T. Living polymerization of ethylene catalyzed by titanium complexes having fluorine-containing phenoxyimine chelate ligands. J. Am. Chem. Soc. 2002, 124, 3327–3336.

    Article  PubMed  CAS  Google Scholar 

  11. Mitani, M.; Furuyama, R.; Mohri, J.; Saito, J.; Ishii, S.; Terao, H.; Nakano, T.; Tanaka, H.; Fujita, T. Syndiospecific living propylene polymerization catalyzed by titanium complexes having fluorine-containing phenoxy-imine chelate ligands. J. Am. Chem. Soc. 2003, 125, 4293–4305.

    Article  PubMed  CAS  Google Scholar 

  12. Ishii, S.; Furuyama, R.; Matsukawa, N.; Saito, J.; Mitani, M.; Tanaka, H.; Fujita, T. Ethylene and ethylene/propylene polymerization behavior of bis(phenoxy-imine) Zr and Hf complexes with perfluorophenyl substituents. Macromol. Rapid Commun. 2003, 24, 452–456.

    Article  CAS  Google Scholar 

  13. Chan, M. C. W. Weak attractive ligand-polymer and related interactions in catalysis and reactivity: impact, applications, and modeling. Chem. Asian J. 2008, 3, 18–27.

    Article  PubMed  CAS  Google Scholar 

  14. Rishina, L.A.; Galashina, N.M.; Gagieva, S.Ch.; Tuskaev, V.A.; Kissin, Y.V.; Cocatalyst effect in propylene polymerization reactions with post-metallocene catalysts. Eur. Polym. J. 2013, 49, 147–155.

    Article  CAS  Google Scholar 

  15. Gagieva, S. Ch.; Tuskaev, V. A.; Magomedov, K. F.; Moskalenko, M. A.; Pavlov, A. A.; Meshchankina, M. Yu.; Shcherbina M.A.; Bulychev, B. M. Immobilized on MgCl2 bis(phenoxxy-imine) complexes of Ti and Zr as catalysts for preparing UHMWPE and ethylene/higher α-olefin copolymers. Polym. Bull. 2021.

  16. Gagieva, S. Ch.; Magomedov K. F.; Tuskaev V. A.; Bogdanov V. S.; Kurmaev D. A.; Golubev E.K.; Denisov G. L.; Nikiforova G. G.; Evseeva M. D., Saracheno D.; Buzin M. I.; Dzhevakov P. B.; Privalov V. I.; Bulychev B. M. Effect of activator and outgoing ligand nature on the catalytic behavior of bis(phenoxy-imine) Ti(IV) complexes in the polymerization of ethylene and its copolymerization with higher olefins. Polymers 2022, 14, 4397.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Saha, T. K.; Mandal, M.; Chakraborty D.; Ramkumar, V. Imino phenoxide complexes of Group 4 metals: synthesis, structural characterization and polymerization studies. New J. Chem. 2013, 37, 949–960.

    Article  CAS  Google Scholar 

  18. Roymuhury, S. K.; Chakraborty D.; Ramkumar, V. Synthesis and characterization of group 4 metal alkoxide complexes containing imine based bis-bidentate ligands: effective catalysts for the ring opening polymerization of lactides, epoxides and polymerization of ethylene. Dalton Trans. 2015, 44, 10352–10367.

    Article  PubMed  CAS  Google Scholar 

  19. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341.

    Article  CAS  Google Scholar 

  20. Sheldrick, G. M. SHELXT—Integrated space-group and crystal-structure determination. Acta Cryst. 2015, A71, 3–8.

    Google Scholar 

  21. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8.

    Google Scholar 

  22. Kurtz, M.S. Ultra-high molecular weight polyethylene in total joint replacement, in: The Uhmwpe Handbook, Elsevier Inc., 2004.

  23. Alvarez, S. Distortion pathways of transition metal coordination polyhedra induced by chelating topology. Chem. Rev. 2015, 115, 13447–13483.

    Article  PubMed  CAS  Google Scholar 

  24. Tuskaev, V. A.; Gagieva, S. Ch.; Kurmaev, D. A.; Khrustalev, V.N.; Dorovatovskii, P. V.; Mikhaylik, E. S.; Golubev, E. K.; Buzin, M. I.; Zubkevich, S. V.; Nikiforova, G. G.; Vasil’ev, V. G.; Bulychev, B. M.; Magomedov K. F. Novel titanium(IV) complexes with 1,2-diolate ligands: synthesis, structure and catalytic activities in ultra-high molecular weight polyethylene production. J. Organomet. Chem. 2018, 877, 85–91

    Article  CAS  Google Scholar 

  25. Tuskaev, V. A.; Gagieva, S. Ch.; Kurmaev, D. A.; Bogdanov, V. S.; Magomedov, K. F.; Mikhaylik, E.S.; Golubev, E. K.; Buzin, M. I.; Nikiforova, G. G.; Vasil’ev V. G.; Khrustalev, V. N.; Dorovatovskii, P. V.; Bakirov, A. V.; Shcherbina, M. A.; Dzhevakov, P. B.; Bulychev B. M. Novel titanium(IV) diolate complexes with additional O-donor as precatalyst for the synthesis of ultrahigh molecular weight polyethylene with reduced entanglement density: influence of polymerization conditions and its implications on mechanical properties. Appl. Organomet. Chem. 2021, 35, e6256.

    Article  CAS  Google Scholar 

  26. Tuskaev, V. A.; Gagieva, S. Ch.; Kurmaev, D. A.; Zubkevich, S. V.; Dorovatovskii, P. V.; Khrustalev, V. N.; Mikhaylik, E. S.; Golubev, E. K.; Buzin, M. I.; Nikiforova, G. G.; Vasil’ev, V. G.; Zvukova, T. M.; Bulychev, B. M. Novel alkoxo-titanium(IV) complexes with fluorinated 2-hydroxymethylphenol derivatives as catalysts for the formation of ultra-high molecular weight polyethylene nascent reactor powders. Inorg. Chim. Acta 2019, 498, 119159.

    Article  CAS  Google Scholar 

  27. V. A. Tuskaev, S. Ch. Gagieva, A. V. Churakov, D. A. Kurmaev, K. F. Magomedov, M. D. Evseeva, Evgenii K. Golubev, M. I. Buzin, G. G. Nikiforova, D. Saracheno, S. S. Shatokhin, B. M. Bulychev. Novel titanium (IV) diolate complexes with thiophene-containing OSO-type ligand as pre-catalyst for ethylene polymerization and ethylene-propylene copolymerization. J. Organomet. Chem. 2022, 977, 122457.

    Article  CAS  Google Scholar 

  28. Graessley, W. W.; Edwards, S. F. Entanglement interactions in polymers and the chain contour concentration. Polymer 1981, 22, 1329–1334.

    Article  CAS  Google Scholar 

  29. Eckstein, A.; Suhm, J.; Friedrich, C.; Maier, R. D.; Sassmannshausen, J.; Bochmann, M.; Mülhaupt, R. Determination of plateau moduli and entanglement molecular weights of isotactic, syndiotactic, and atactic polypropylenes synthesized with metallocene catalysts. Macromolecules 1998, 31, 1335–1340.

    Article  CAS  Google Scholar 

  30. Eckstein, A.; Friedrich, C.; Lobbrecht, A.; Spitz, R.; Mülhaupt, R. Comparison of the viscoelastic properties of syndio- and isotactic polypropylenes. Acta Polym. 1997, 48, 41–46.

    Article  CAS  Google Scholar 

  31. Rastogi, S.; Lippits, D. R.; G. Peters, W. M.; Graf, R.; Yao, Y.; Spiess, H. W. Heterogeneity in polymer melts from melting of polymer crystals. Nat. Mater. 2005, 4, 635–641.

    Article  PubMed  CAS  Google Scholar 

  32. Ozerin, A. N.; Ivanchev, S. S.; Chvalun, S. N.; Aulov, V. A.; Ivancheva, N. I.; Bakeev, N. F. Properties of oriented film tapes prepared via solid-state processing of a nascent ultrahigh-molecular-weight polyethylene reactor powder synthesized with a postmetallocene catalyst. Polym. Sci. Ser. A 2012, 54, 950–954.

    Article  CAS  Google Scholar 

  33. https://www.teijinaramid.com/wp-content/uploads/2018/12/18033TEI-Prodbroch-Endumax_LR.pdf.

  34. Wang, Y.; Fan, H., Li, B.-G. Functionalized phenoxy-imine catalyst for synthesizing highly crystalline nascent UHMWPEs. 1. Molecular weight characteristics and polymer morphologies. Mater. Today Commun. 2020, 25, 101267.

    Article  CAS  Google Scholar 

  35. Khalil, Y.; Hopkinson, N.; Kowalski, A.; Fairclough, J. P. A. Characterisation of UHMWPE polymer powder for laser sintering. Materials 2019, 12, 3496.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

Synthesis of Ti(IV) phenoxy-imine complexes, study of the ethylene polymerization process and properties of the resulting UHMWPE samples, synthesis of ethylene copolymers and study of their properties were supported by the Russian Science Foundation (No. 22-23-00578). X-ray diffraction data were collected with the financial support from the Ministry of Science and Higher Education of the Russian Federation using the equipment of Center for molecular composition studies of INEOS RAS (No. 075-00697-22-00). NMR studies, DSC, elemental analysis were performed with the financial support of the Ministry of Science and Higher Education of the Russian Federation employing the equipment of Center for molecular composition studies of INEOS RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladislav A. Tuskaev.

Ethics declarations

The authors declare no interest conflict.

Electronic Supplementary Information

10118_2023_3032_MOESM1_ESM.pdf

Olefin Polymerization Behavior of Titanium(IV) Complexes with Fluorinated and Nonfluorinated Aliphatic Phenoxyimine Ligands

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuskaev, V.A., Magomedov, K.F., Gagieva, S.C. et al. Olefin Polymerization Behavior of Titanium(IV) Complexes with Fluorinated and Non-fluorinated Aliphatic Phenoxyimine Ligands. Chin J Polym Sci 42, 52–62 (2024). https://doi.org/10.1007/s10118-023-3032-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-3032-1

Keywords

Navigation