Skip to main content
Log in

Radical recombination in ultrahigh magnetic fields

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The effect of ultrahigh magnetic field (UMF; tens of Tesla) on the recombination kinetics of short-lived radicals in the liquid phase is studied. The influence of the well-known radical-pair mechanism of the magnetic field effect (MFE) in radical chemical reactions and the mechanism of equilibrium thermodynamic alignment of spins of the unpaired electrons of the radicals in UMF on the rate of spin-selective radical recombination is considered. For both mechanisms, the recombination rate constants were calculated using the theory of diffusion-controlled reactions in solution. The contributions of the two mechanisms to the experimentally observed MFE in the recombination of NO radical and the superoxide radical anion affording peroxynitrite in 18 T magnetic field are estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Kaptein, J. Am. Chem. Soc., 1972, 94, 6251; DOI: https://doi.org/10.1021/ja00773a001.

    Article  CAS  Google Scholar 

  2. A. L. Buchachenko, R. Z. Sagdeev, K. M. Salikhov, Magnitnye i spinovye effekty v khimicheskikh reaktsiyakh [Magnetic and Spin Effects in Chemical Reactions], Nauka, Novosibirsk, 1978, 296 pp. (in Russian).

    Google Scholar 

  3. A. L. Buchachenko, Russ. Chem. Rev., 2014, 83, 1; DOI: https://doi.org/10.1070/RC2014v083n01ABEH004335.

    Article  Google Scholar 

  4. A. L. Buchachenko, Russ. Chem. Rev., 1976, 45, 375; DOI: https://doi.org/10.1070/RC1976v045n05ABEH002643.

    Article  Google Scholar 

  5. E. M. Pliss, A. M. Grobov, F. K. Kuzaev, A. L. Buchachenko, Mendeleev Commun., 2017, 3, 246; DOI: https://doi.org/10.1016/j.mencom.2017.05.009.

    Article  Google Scholar 

  6. P. J. Hore, H. Mouritsen, Annu. Rev. Biophys., 2016, 45, 299; DOI: https://doi.org/10.1146/annurev-biophys-032116-094545.

    Article  PubMed  CAS  Google Scholar 

  7. U. E. Steiner, T. Ulrich, Chem. Rev., 1989, 89, 51; DOI: https://doi.org/10.1021/cr00091a003.

    Article  CAS  Google Scholar 

  8. B. M. Tadjikov, D. V. Stass, Yu. N. Molin, Russ. Chem. Bull., 1997, 46, 928; DOI: https://doi.org/10.1007/BF02496121.

    Article  CAS  Google Scholar 

  9. A. F. Efremkin, V. B. Ivanov, Russ. Chem. Bull., 1996, 45, 1350; DOI: https://doi.org/10.1007/BF01434210.

    Article  Google Scholar 

  10. V. I. Porkhun, Yu. V. Aristova, Russ. Chem. Bull., 2019, 68, 565; DOI: https://doi.org/10.1007/s11172-019-2455-x.

    Article  CAS  Google Scholar 

  11. O. T. Kasaikina, L. M. Pisarenko, Russ. Chem. Bull., 2015, 64, 2319; DOI: https://doi.org/10.1007/s11172-015-1158-1.

    Article  CAS  Google Scholar 

  12. P. P. Levin, N. B. Sul’timova, O. N. Chaikovskaya, Russ. Chem. Bull., 2005, 54, 1433; DOI: https://doi.org/10.1007/s11172-005-0423-0.

    Article  CAS  Google Scholar 

  13. V. F. Tarasov, P. P. Levin, Russ. Chem. Bull., 2005, 54, 1131; DOI: https://doi.org/10.1007/s11172-005-0370-9.

    Article  Google Scholar 

  14. V. Ya. Shafirovich, P. P. Levin, Russ. Chem. Bull., 2001, 50, 599; DOI: https://doi.org/10.1023/A:1011340223743.

    Article  CAS  Google Scholar 

  15. E. E. Batova, P. P. Levin, V. Ya. Shafirovich, V. A. Kuz’min, Russ. Chem. Bull., 1995, 44, 427; DOI: https://doi.org/10.1007/BF00702380.

    Article  Google Scholar 

  16. A. L. Buchachenko, L. L. Yasina, A. L. Vdovina, A. B. Blyumenfel’d, Russ. Chem. Bull., 1994, 43, 1328; DOI: https://doi.org/10.1007/BF00703687.

    Article  Google Scholar 

  17. V. N. Borisenko, N. Kh. Petrov, M. V. Alfimov, Russ. Chem. Bull., 1993, 42, 1746; DOI: https://doi.org/10.1007/BF00697056.

    Article  Google Scholar 

  18. B. Lang, S. Mosquera-Vazquez, D. Lovy, P. Sherin, V. Markovic, E. Vauthey, Rev. Sci. Instrum., 2013, 84, 073107; DOI: https://doi.org/10.1063/1.4812705.

    Article  PubMed  Google Scholar 

  19. D. Buerssner, H. J. Wolff, U. E. Steiner, Angew. Chem., Int. Ed., 1994, 33, 1772; DOI: https://doi.org/10.1002/anie.199417721.

    Article  Google Scholar 

  20. T. Y. Karogodina, I. G. Dranov, S. V. Sergeeva, D. V. Stass, U. E. Steiner, ChemPhysChem, 2011, 12, 1714; DOI: https://doi.org/10.1002/cphc.201100178.

    Article  PubMed  CAS  Google Scholar 

  21. M. J. Rose, P. K. Mscharak, Coord. Chem. Rev., 2008, 252, 2093; DOI: https://doi.org/10.1016/j.ccr.2007.11.011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. N. V. Shokhirev, E. B. Krissinel’, K. M. Salikhov, Chem. Phys., 1989, 137, 197; DOI: https://doi.org/10.1016/0301-0104(89)87105-8.

    Article  CAS  Google Scholar 

  23. E. B. Krissinel’, N. V. Shokhirev, K. M. Salikhov, Chem. Phys., 1989, 137, 207; DOI: https://doi.org/10.1016/0301-0104(89)87106-X.

    Article  Google Scholar 

  24. A. I. Shushin, Phys. Rev. B, 2011, 84, 115212; DOI: https://doi.org/10.1103/PhysRevB.84.115212.

    Article  Google Scholar 

  25. A. I. Shushin, V. P. Sakun, Russ. J. Phys. Chem. B, 2015, 9, 120; DOI: https://doi.org/10.1134/S1990793115010108.

    Article  CAS  Google Scholar 

  26. E. V. Gorelik, N. N. Lukzen, R. Z. Sagdeev, U. E. Steiner, Chem. Phys., 2000, 262, 303; DOI: https://doi.org/10.1016/S0301-0104(00)00312-8.

    Article  CAS  Google Scholar 

  27. E. V. Gorelik, N. N. Lukzen, R. Z. Sagdeev, H. Murai, Phys. Chem. Chem. Phys., 2003, 5, 5438; DOI: https://doi.org/10.1039/b308071d.

    Article  CAS  Google Scholar 

  28. N. N. Lukzen, K. L. Ivanov, V. M. Sadovsky, R. Z. Sagdeev, J. Chem. Phys., 2020, 152, 034103; DOI: https://doi.org/10.1063/1.5131583.

    Article  PubMed  CAS  Google Scholar 

  29. K. I. Zamaraev, Yu. N. Molin, K. M. Salikhov, Spinovyi obmen: teoriya i fiziko-khimicheskieprilozheniya [Spin Exchange: Theory and Applications in Physical Chemistry], Nauka, Novosibirsk, 1977, 317 pp. (in Russian).

    Google Scholar 

  30. A. B. Doktorov, Physica A, 1978, 90, 109; DOI: https://doi.org/10.1016/0378-4371(78)90047-X.

    Article  Google Scholar 

  31. A. A. Kipriyanov, A. B. Doktorov, Physica A, 2003, 326, 105; DOI: https://doi.org/10.1016/S0378-4371(03)00288-7.

    Article  CAS  Google Scholar 

  32. K. L. Ivanov, N. N. Lukzen, A. B. Doktorov, A. I. Burshtein, J. Chem. Phys., 2001, 114, 1754; DOI: https://doi.org/10.1063/1.1317527.

    Article  CAS  Google Scholar 

  33. K. L. Ivanov, N. N. Lukzen, A. B. Doktorov, A. I. Burshtein, J. Chem. Phys., 2001, 114, 1763; DOI: https://doi.org/10.1063/1.1317527.

    Article  CAS  Google Scholar 

  34. K. L. Ivanov, N. N. Lukzen, A. B. Doktorov, A. I. Burshtein, J. Chem. Phys., 2001, 114, 5682, DOI: https://doi.org/10.1063/1.1353546.

    Article  CAS  Google Scholar 

  35. A. A. Kipriyanov, O. A. Igoshin, A. B. Doktorov, Physica A, 1999, 268, 567; DOI: https://doi.org/10.1016/S0378-4371(99)00020-5.

    Article  CAS  Google Scholar 

  36. K. L. Ivanov, N. N. Lukzen, A. B. Doktorov, A. I. Burshtein, J. Chem. Phys., 2002, 117, 9413; DOI: https://doi.org/10.1063/1.1516214.

    Article  CAS  Google Scholar 

  37. M. V. Smoluchovsky, Z. Phys. Chem., 1917, 92, 129; DOI: https://doi.org/10.1515/zpch-1918-9209.

    Google Scholar 

  38. F. C. Collins, G. E. Kimball, J. Colloid. Sci., 1949, 4, 425; DOI: https://doi.org/10.1016/0095-8522(49)90023-9.

    Article  CAS  Google Scholar 

  39. P. A. Purtov, A. B. Doktorov, Chem. Phys., 1993, 178, 47; DOI: https://doi.org/10.1016/0301-0104(93)85050-I.

    Article  CAS  Google Scholar 

  40. A. B. Doktorov, P. A. Purtov, Sov. J. Chem. Phys., 1990, 6, 889.

    Google Scholar 

  41. H. S. Hahn, K. Kim, K. Kim, X. Hu, T. Painter, I. Dixon, K. Seokho, K. R. Bhattarai, S. Noguchi, J. Jaroszynski, D. C. Larbalestier, Nature, 2019, 570, 496; DOI: https://doi.org/10.1038/s41586-019-1293-1.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Foundation for Basic Research (Project No. 20-03-00234).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. V. Stass or N. N. Lukzen.

Additional information

Dedicated to Academician of the Russian Academy of Sciences R. Z. Sagdeev on the occasion of his 80th birthday.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2347–2353, December, 2021.

This paper does not contain descriptions of studies on animals or humans.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrova, M.V., Stass, D.V. & Lukzen, N.N. Radical recombination in ultrahigh magnetic fields. Russ Chem Bull 70, 2347–2353 (2021). https://doi.org/10.1007/s11172-021-3351-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-021-3351-8

Key words

Navigation